What Language You Speak Shapes Your Subjective Time

If the popular 2016 science fiction movie “Arrival”, wherein linguist Dr. Louise Banks learns an alien language that enables her to understand and perceive the concept of time in a very different way (i.e. past, present and future exists simultaneously), fails to amaze you then probably the real experimental evidence in similar vein might astonish you. Yes, the recent article by Prof. Emanuel Bylund and Prof. Panos Athanasopoulos published in the Journal of Experimental Psychology: General demonstrates the effect of language on time perception.

The linguistic relativity hypothesis or more popularly known as “Sapir-Whorf hypothesis[1]” suggest that language affects thought process and cognition (although see McWhorter[2], 2014 for opposing view). Previous studies[3-5] by Prof. Lera Boroditsky and colleagues have shown how the concept of time, is represented differently in different languages, but a strong experimental study to demonstrate that language affects time perception was lacking.

Prof. Bylund and Prof. Athanasopoulos used temporal reproduction task, involving three groups, i) only Spanish speakers, ii) only Swedish speakers and iii) Spanish-Swedish bilinguals to investigate the effect of language on time perception. They selected Spanish and Swedish speakers, as in both these languages time is represented and expressed differently. While Spanish speakers represents time in terms of volume and use metaphors like “much time”, Swedish speakers on the other hand represents time in terms of distance and use metaphors like “long time”.

For 40 Spanish and 40 Swedish speakers, they measured the performance in temporal reproduction task as a function of changes in the non-temporal stimulus dimensions such as growing line (representing distance metaphor) or filling of container (representing volume metaphor). The duration of the stimulus and the irrelevant stimulus dimensions (i.e. length of line and filling of container) were manipulated orthogonally. The stimulus duration for reproduction task ranged from 1000ms to 5000ms in steps of 500ms, whereas the length of growing line or the filling of container ranged from 100 to 500 pixels in steps of 50 pixels.

Half of the Spanish and Swedish speakers performed the temporal reproduction task with growing line stimulus while other half performed the temporal reproduction task with filling container stimulus. At the beginning of every trial, the instruction to perform either the temporal reproduction task or the non-temporal (line or container) task was prompted with a word label and a symbol (e.g. hourglass for temporal task, and cross for non-temporal task). For Spanish group the following word labels were used ‘duracion’ for temporal task, ‘distancia’ for line task or ‘cantidad’ for container task, whereas for Swedish group the following word labels were used ‘tid’ for temporal task, ‘avstand’ for line task or ‘mangd’ for container task.

When they categorized the data into extreme (1000ms, 1500ms, 4500ms, 5000ms) and medium category (2000ms to 4000ms), they found that for medium category Spanish speakers performance in temporal reproduction task was influenced when observing the filling container but not when observing the growing line. On the contrary, Swedish speakers performance in temporal reproduction task was influenced when observing the growing line but not when observing the filling container. As the Spanish speakers use amount or volume based metaphor to represent time, having a volume based stimulus interfered with their temporal reproduction whereas the Swedish speakers use distance based metaphor to represent time, having a distance based stimulus interfered with their temporal reproduction.

Interestingly when the same experiment was performed with different 40 Spanish and 40 Swedish speakers, without the word prompt (only symbols were used to indicate which task to perform), no such effect was observed, suggesting that linguistic cue or prompt is necessary for such effect to be tapped in the temporal reproduction task.

To establish that the above effect is mostly language related and not cultural bias, they performed the above experiment with 74 Spanish-Swedish bilinguals wherein half participants were given prompt in Spanish language and other half were given prompt in Swedish language. As predicted and observed in experiment 1, when Spanish word prompt was used participants temporal reproduction was influenced by filling container stimulus, whereas when Swedish word prompt was used participants temporal reproduction was influenced by growing line stimulus. Thus establishing that language context influences time perception.

In conclusion, this study provides a convincing evidence for the effect of language context on time perception and opens a range of possibilities and questions, to be explored and answered, resulting in better understanding the relationship between language and time perception. In future, it would be nice to investigate this effect with other languages and temporal paradigms such as temporal bisection and generalization. In addition, it would be interesting to investigate whether such linguistic cues really influence time perception or only induce response bias; such questions can be addressed by performing the ERP version of similar experiment and measuring the CNV (contingent negative variation) component.

Although to experience such a drastic change in time perception as depicted in the movie “Arrival” may not be feasible at the moment, but some milder progress has been made in this direction with the introduction of “The Whorfian Time Warp”.

References:

1. Whorf, B. L. (1956). Language, thought, and reality: Selected writings (J. B. Carroll, Ed.). Cambridge, MA: MIT Press.

2. McWhorter, J. (2014). The Language Hoax. Why the World Looks the Same in Any Language. New York: Oxford University Press.

3. Boroditsky, L. (2001). Does language shape thought? Mandarin and English speakers’ conception of time. Cognitive Psychology, 43, 1-22.

4. Boroditsky, L., Fuhrman, O., & McKormick, K. (2010). Do English and Mandarin speakers think about time differently? Cognition, 118, 123-129.

5. Casasanto, D., Boroditsky, L., Phillps, W., Greene, J., Goswami, S., Bocanegra-Thiel, S. & Gil, D. (2004). How deep are effects of language on thought? Time estimation in speakers of English, Indonesian, Greek, and Spanish. In K. Forbus, D. Gentner, & T. Regier (Eds.). Proceedings of the 26th Annual Conference of the Cognitive Science Society (pp. 186–191). Mahwah, NJ: Lawrence Erlbaum Associates.

Source article: Bylund, E., & Athanasopoulos, P. (2017, April 27). The Whorfian Time Warp: Representing Duration Through the Language Hourglass. Journal of Experimental Psychology: General. Advance online publication. http://dx.doi.org/10.1037/xge0000314

—Mukesh Makwana (mukesh@cbcs.ac.in),
Doctoral student,
Centre of Behavioural and Cognitive Sciences (CBCS), India.

Author: Argie