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Abstract 
Bayesian parameter estimation and Shannon's theory of information provide tools for 
analyzing and understanding data from behavioral and neurobiological experiments on 
interval timing—and from experiments on Pavlovian and operant conditioning, because 
timing plays a fundamental role in associative learning. In this tutorial, we explain basic 
concepts behind these tools and show how to apply them to estimating, on a trial-by-trial, 
reward-by-reward and response-by-response basis, important parameters of timing 
behavior and neurobiological manifestations of timing in the brain. These tools allow us to 
assess the trade-off between acting as an ideal observer should act and acting as an ideal 
agent should act, which is also known as the trade-off between exploration (information 
gathering) and exploitation (information utilization). The Supplementary Material provides 
well-documented Matlab™ and Python code that does the basic analyses and graphs the 
results. A GitHub site accepts further developments of relevant code. 
 

 

Information theory and Bayesian approaches to statistics are natural companions. 
Together, they can assist us in analyzing, intuitively understanding, and formally modeling 
results from experiments in which we investigate the role of interval timing in behavior 
and in associative learning. It as has long been clear that associative learning depends on 
timing (C. R. Gallistel & Gibbon, 2000; Gibbon & Balsam, 1981; Stout & Miller, 2007; Yin, 
Barnet, & Miller, 1994). In this paper, we lay out the basics of Bayesian parameter 
estimation and Shannon’s theory of information, as they apply to the behavioral and 
neurobiological study of timing and associative learning. Then, we show how to turn this 
mathematics into useful tools. 
 
Parameter estimation—for example, estimating the means and standard deviations of two 
distributions— is the first step in data processing. Frequentist approaches to parameter 
estimation require the collection of samples of pre-specified size. Bayesian parameter 
estimation naturally applies datum-by-datum, that is response-by-response and 
reinforcement-by-reinforcement. That makes it a powerful tool in estimating learning 
rates—how soon timing-based changes in behavior and/or in neurobiological activity 
appear, and how soon evidence of timed responses appears. 
 

The entropy difference (denoted △H) between two distributions is the mutual information 

when those distributions are accurately known and suitably discretized. We show that it is 
useful even when the distributions are not accurately known but assumed to have the form 
dictated by the maximum entropy principle. This principle is an information-theoretic 
realization of Occam’s razor (Jaynes, 1957, 2003). 
 



 2 

An example of two distributions assumed in analyzing data from Pavlovian timing 
experiments are the distribution of inter-reward intervals in the presence of conditional 
stimuli (denoted CSs, for example, a noise that comes on and off unpredictably) and the 
same distribution in the context in which the CS occurs (typically, a test chamber). In our 
analyses, we assume them to be exponential even when we know they are not and cannot 
be (for example, when we know they are mixture distributions). 
 
An example from reinforcement learning experiments (aka operant conditioning) is the 
distribution of inter-response intervals and the distribution of inter-reward intervals. We 

show that △H is a generally applicable measure of the extent to which two events or two 

states are associated in time. It applies in many circumstances where the conventional 
measure of association—the correlation coefficient— cannot be computed (C. R. Gallistel, 
2021): It can be computed even when n = 1; and it does not presume a linear relationship 
(Kinney & Atwal, 2014). It has most of the properties of mutual information but not those 
properties that depend on the assumption of the form of the assumed distribution (for 
example, the property of being invariant under change in variable). 
 
A second fundamental quantity in information theory is the Kullback-Leibler divergence, 
denoted by Dkl. It measures the extent to which a distribution of interest diverges from a 
reference distribution. It is a measure the strength of the evidence that the two 
distributions differ, with possible implications for the neurobiology of memory. It gives the 
mnemonic cost (in bits) of encoding a datum coming from one distribution, for example, 
the distribution of waits for reinforcement conditioned on a CS, on the assumption that 
they come from a reference distribution, for example, the unconditional waits for 
reinforcement when in the test chamber. The cumulative cost of coding the n conditional 
data already seen is, on average, simply nDkl, the number of data seen times the estimated 
divergence of the conditional distribution from the unconditional distribution. The nDkl is 

to △H as the significance of a correlation coefficient is to the coefficient itself: △H 

measures the association, while the nDkl measures the strength of the evidence for it. 
 

Both △H and the nDkl are computed from estimates of the parameters of the distributions 

from which the data are assumed to come. These distributions are assumed to be 
exponential, whether they are or not. This strong simplifying assumption is a major reason 

for distinguishing △H from mutual information. It has three justifications:  

 It makes △H and nDkl computable by simple closed-form formulae.  

 There is extensive experimental evidence that the learning rate and the difference 
in performance in associative protocols is primarily determined by the ratio of 
reinforcement rates (the reciprocals of the mean waits for reinforcement). This 
implies that the only statistic that matters to the subject in making these decisions 
is the rate of reinforcement. Put another way, the behaviorally relevant sufficient 
statistics from a sample of temporal intervals are the number of intervals in the 
sample and the duration over which these intervals have been observed. 
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 The first few intervals in a sample provide the lion’s share of the information 
required to estimate the mean interval, but give only a weak and unreliable 
estimate of the variance. Therefore, they provide little basis for deciding even 
between the exponential and the Normal as a model for the source of the data. 

  When only the estimate of the mean is available, the maximum entropy principle 
(Jaynes, 1957, 2003) dictates the assumption of the exponential form for the source 
distribution. It is the weakest possible assumption. 

 
Bayesian parameter estimation is essential when n’s are small, because integration over the 
posterior distributions on the parameter estimates takes into account the large 
uncertainties in estimates made from very small samples. Bayesian parameter estimation 
supplies the required posterior distributions. 
 
The nDkl is a simple, maximally powerful datum-by-datum measure of the strength of the 
evidence that a parameter of the distribution of a behavioral or neurobiological variable 
(for example the response rate) has changed. It allows us to address questions such as, 
How many reinforced CSs are required for a subject to detect the temporal association 
between a CS and a US or between a response and a reinforcement? The use of this datum-
by-datum measure obviates the need to rely on arbitrary decision criteria such as the 
number of trials successive trials on which a response is observed. These criteria often 
demonstrably underestimate the subject’s sensitivity to differences and changes in rates of 
responding (the reciprocals of average wait durations), probabilities and contingencies. 
 
Different evidentiary decision variables—for examples, p values, odds ratios, and nDkl’s— 
are monotonically related because a useful measure must depend monotonically on the 
information provided by the data. We provide a simple formula that maps from nDkl to p. 
 
 

Bayesian Parameter Estimation 
 

Traditional statistics at the applied level are based on maximum likelihood estimates of 
population parameters given a sample—and, usually also on the central limit theorem, 
which states that sample means will be normally distributed more or less regardless of the 
form of the distribution from which samples are drawn. In their rigorous application, these 
measures require one to specify sample sizes in advance of collecting the data. This has led 
to insistence on a pre-registration of one's experimental protocol, in which one specifies 
the sample sizes in advance and the inferential statistics to be performed. 
 
These traditional approaches do not work well with small samples unless the effect of one's 
experimental manipulation is big. However, one often does not know the size of the effect 
one should expect. One commonly hopes to learn from a proposed experiment whether 
there is an effect and if so, how big. In that case, specifying sample size in advance is 
antithetical to the purpose of the experiment. 
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Moreover, we often want to measure the strength of the evidence as the data come in – that 
is, as the sample size grows – because the bigger the effect, the more rapidly strong 
evidence for it emerges and the sooner we can stop the experiment. The slope of the nDkl 
when plotted as a function of n is a measure of effect size; the greater the divergence, the 
steeper the slope. 
 
Finally, because we are interested in acquisition and extinction and, more generally, in the 
course of behavioral change, we often want stimulus parameter estimates and behavioral 
parameter estimates when there are very little data. An example we will treat is when the 
only datum is the amount of time elapsed before the occurrence of the first response and 
the first reinforcement in an operant conditioning protocol. 
 
From a subject’s perspective, the protocoled events it experiences in our experiments are 
manifestations of a stochastic process whose form and parameters must be inferred from 
the observable outcomes the process generates. The evidence for the form and the value of 
its parameter vector grows stronger as more events are experienced, leading eventually to 
the appearance of an appropriately timed anticipatory response. We want to compute the 
strength of the evidence for the form (e.g., exponential or Normal) and its parameter values 
(e.g., means and variances) as a function of time elapsed and the numbers of relevant 
events. We want then to plot the strength of the evidence for the behavioral change against 
the strength of the evidence the subject has about the process that generates the subject’s 
experiences. This enables us to answer the question, How much evidence is required before 
anticipatory behavior appears? 
 
In Bayesian parameter estimation, one puts a prior distribution on the plausible values for 
the parameter(s) of the distribution that one believes approximately describes (or will 
describe) the data. We refer to distributions that describe the data as source distributions 
to distinguish them from prior distributions. What we call the source distribution is often 
called the likelihood; our reasons for calling for using this non-standard terminology are 
explained later. 
 
The distinction between the source distribution and the prior distributions is 
fundamental—and often confusing to the uninitiated. Before clarifying it, we cover the 
basics of distribution functions. They are often not stressed in the statistics education many 
of us received. 
 
Distributions 
 
Distributions are functions that map from the members of a support set to the members of a 
set of probabilities or probability densities. In a plot of a distribution, the support set is 
composed of the possible values a datum might assume, arrayed along the x axis. When the 
support is discrete (in technical language, finite or countably infinite), the distribution 
assigns probabilities to those possibilities (Figure 1). When the support is continuous (in 
technical language, uncountably infinite), the distribution assigns probability densities 
(Figure 2). 
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To every probability distribution (think histogram), there corresponds a cumulative 
probability distribution. The cumulative distribution is the cumulative sum (or integral) of 
the probabilities (or probability densities) as one moves from left to right along the 
support axis, from the smallest possibility to the largest. As can be seen in the second rows 
of Figures 1 and 2, cumulative distributions asymptote to 1. That’s because the total mass 
of probability in a distribution must be 1, since its support is a (possibly uncountably 
infinite) set of mutually exclusive and exhaustive possibilities. Note also that for every 
cumulative distribution there is a probability distribution, which is found by taking a 
difference (for discrete distributions) or a derivative (for continuous ones). 
 
A continuous distribution assigns probability densities to the members of the support set 
rather than probabilities (Figure 2). Whereas probabilities always fall between 0 and 1 
(Figure 1 and Figure 2 bottom row), probability densities (Figure 2, top row) may take on 
values from 0 to + infinity. When, for example, the cumulative probability function is a step 
from 0 to 1 at some point along the x axis (Figure 2, bottom left), the derivative at the step 
is infinite, and everywhere else it is 0. This derivative is the unit impulse; it is the limit of a 
rectangle whose width goes to 0 as its height goes to infinity while maintaining an area of 1 
(the total mass of probability in any probability distribution). 

 
Figure 1. Three common discrete distributions: the Bernoulli, the geometric and the binomial. 
They are plotted with bars rather than curves because the support is discrete. Discrete 
support may always be represented by the integers, as for example, in the common practice of 
representing “failure” by the integer ‘0’ and “success” by the integer ‘1’ in the support for the 
Bernoulli distribution. The cumulative probabilities in the bottom row are obtained by 
moving rightward from bar to bar in the top row, summing the successive probabilities. The 
geometric distribution may be thought of as the discrete analog of the exponential 
distribution and the binomial may be thought of as the discrete analog of the Normal, because 
the exponential and the Normal are the distributions that emerge as the set of possibilities 
becomes uncountably infinite (as the bars become ever narrower and more numerous. 
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Figure 2. Four common distributions over continuous variables. It is stipulative that a fair 
coin have a probability of heads of exactly 0.5; therefore, the distribution of the probability of 
obtaining heads when flipping a fair coins is a vertical line at p = .5 with no width, infinite 
height and an area (width x height) = 1. The cumulative distribution for the p values of fair 
coins is a step from 0 to 1 at 0.5. The beta distribution is a commonly used prior distribution 
on the Bernoulli p in Bayesian statistics. It has two parameters, which may assume values 
between 0 and + infinity. The example here uses A = B = .5. These are the values for the so-
called Jeffreys prior on the Bernoulli. The probability densities at both extremes become 
infinite, but, like all proper distributions, the beta distribution integrates to 1 (bottom row). 
The exponential describes the distribution of the intervals between randomly scheduled 
events. The support for distributions over continuous variables like interval duration is said to 
be uncountably infinite because of Cantor’s famous proof that there are uncountably many 
different intervals within any finite interval, no matter how small that finite interval is. 
 
Distribution functions are determined by their mathematical form and by the values of their 
parameters. The form defines a family of distributions. The members of that family are 
distinguished by the values chosen (or estimated) for their parameters. Thus, for example, 
a Normal distribution is a family and a Normal distribution for which a mean and standard 
deviation have been specified is a member of that family. 

A distribution with a given form may be parameterized in different ways. This becomes 
important in Bayesian analysis. For example, the Bernoulli and the geometric distributions 
may both be parameterized either by p (the probability of a success) or by the odds of a 
success, p/(1 – p). Statisticians prefer the former parameterization; bookies prefer the 
latter. The exponential may be parameterized either by the rate at which events occur, 𝜆, or 
by the average interval between them, µ = 1/𝜆. The Normal may be parameterized by its 
mean (𝜇) and standard deviation (𝜎), or by its mean and variance (𝜎2), by its mean and 
precision (𝜏 = 1/𝜎2), or even by its mean and coefficient of variation (σ/µ). 
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Having covered the basics of probability distributions, we can explain the two distributions 
that are always in play in Bayesian parameter estimation, the source distribution, which is 
supported by possible values for the data, and the prior/posterior distribution, which is 
supported by possible values for the parameter(s) of the source distribution. The source 
distribution and its prior distribution are distinguished by their support not by their form; 
however, generally speaking, they also have different forms. 
 
Source distributions 
Stochastic models for data may have any number of parameters. In deep learning models, 
they have millions, even billions. However, the source distributions commonly used in 
modeling behavior have only 1 or 2 parameters. For example, for Normal distributions, 𝜃 =
[𝜇 𝜎], whereas for the Bernoulli, 𝜃 = 𝑝; and for the exponential, 𝜃 = 𝜆, the rate 
parameter. 
 
Prior Distributions 
 
The support for a prior is the parameter vector of the source—not the possible values for a 
datum. Thus, for example, the support for the Beta distribution is the Bernoulli 
distribution’s p parameter. The Bernoulli support vector contains only 2 elements, failure 
(0) and success (1), but the support for the prior on p is uncountably infinite, because there 
are uncountably many different possible values for p.  
 
The prior distributions for the Bernoulli, the geometric and the exponential distributions 
are 1-dimensional because they have only 1 parameter. The support for a prior distribution 
on the parameters of the Normal distribution is two-dimensional, because the Normal’s 
parameter vector has two elements (for example, its mean, µ, and sigma, σ). The support 
set for the prior distribution on the Normal’s parameter vector is the cross product of two 
uncountably infinite sets: It consists of every possible combination of values for µ, which 
ranges from minus to plus infinity, and for σ, which ranges from 0 to +infinity. There are, of 
course, uncountably many combinations. 
 
Prior distributions also have parameters. They are called hyperparameters to distinguish 
them from the parameters of the corresponding source distribution. For the common 
distributions we here consider, the number of hyperparameters is twice the number of 
source-distribution parameters to be estimated. 
 
The source distribution represents uncertainty about what the value of the next datum will 
be; the prior/posterior distribution represents uncertainty about the value(s) of the 
parameter(s) of the source distribution, given the finite amount of data from which we 
have estimated the parameter(s). 
 
Posterior Distributions 
 
In a frequentist approach, one typically gathers a set of data—fills out a prespecified 
sample—and then computes estimates of the parameter(s) of the source distribution. One 
does not assume a form for the source distribution, because the central limit theorem 

Commented [rf1]: I think variance is actually more 

common. 

 

Not for my audience--crg 
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assures us that the sample means will be normally distributed almost regardless of what 
the form of the source distribution is. In a Bayesian approach, by contrast, one assumes a 
form for both the source distribution and the prior. The assumption about the form of the 
source distribution is implicit in the prior distribution, because the parameters of the 
source distribution are the support for the prior. (In some denotations of Bayes Rule, the 
dependence on the assumed form for the source is made explicit, but often it is not.) 
 
Rather than working with samples of pre-specified size, it is not uncommon to update the 
posterior distribution over the parameter(s) of the source distribution datum by datum—
either as the data come in or post hoc, as one considers, for example, more and more trials 
or more and more responses or more and more reinforcements. 
 
The updated posterior distribution is often referred to as the prior (as in “integrating over 
the priors”). This is potentially confusing, as one usually thinks of the prior as the 
distribution before seeing any data. However, we can also think of the prior as being our 
belief about future data based on past data. The fact that one and the same distribution is 
regarded as the posterior distribution at one time—typically when it has just been 
updated—and as the prior distribution at another time—typically when one is about to 
bring in more data—takes some getting used to. However, this terminology is deeply 
engrained in the Bayesian approach to estimating parameters. 
 
Consider for illustrative example the problem of estimating quickly and accurately subjects’ 
timing coefficient of variation (CoV) from the distribution of stop latencies in the peak 
procedure. This distribution is known to be approximately Normal (C. R. Gallistel, King, & 
McDonald, 2004). Estimating the CoV requires estimating both the mean and standard 
deviation. For reasons to be explained when we come to conjugate priors, a good choice for 
the prior is the Normal-gamma distribution, which has 4 parameters. We know from 
extensive prior research that the mean will be positive. Although a subject may 
occasionally stop before the target time has elapsed, it will on average stop after that time. 
We also know from extensive prior research that the standard deviation will be less than 
half the mean. Because experimental science is a cumulative enterprise, it makes sense to 
take advantage of this hard-won prior knowledge. We do that by bringing it to bear on our 
choice of initial values for parameters of the Normal gamma. Bringing in that information 
can substantially reduce the amount of data required to estimate the coefficient of variation 
to a desired level of accuracy. Moreover, by updating the prior datum by datum, we can 
stop as soon as we have the desired precision in our estimate, because the updated 
posterior distribution on the CoV gives us a measure of the precision we have attained (the 
credible interval). Intuitively, the credible interval is the interval over which the plot of the 
posterior distribution is distinguishably above the x axis (aka, the support). 
 
When using informative priors, one should bear in mind that if the data do not agree with 
the prior, the parameter estimates will be badly biased by the prior when there is little 
data. The inappropriateness of a prior will become evident if the parameter estimates after 
a modest amount of data diverge substantially from the mean of the initial prior 
distribution. 
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A common misunderstanding is that a prior distribution is an early version of the assumed 
source distribution. Purge oneself of this misconception! Repeat some large number of 
times: “The support for the prior is the parameter vector for the source; it is not the 
possible values that data may take.” The source distribution represents uncertainty about 
what the value of a datum may be. The prior distribution represents uncertainty about 
what the value(s) of the parameter(s) of the source distribution may be. 
 
 
Conjugate Priors 
 
For practical work, it is often advantageous to use a conjugate prior. A conjugate prior has 
the mathematical form that makes updating the prior maximally simple. It is maximally 
simple because the form does not change. This property is unique: One can assume 
whatever form for a prior one thinks makes sense; however, if one chooses a form other 
than the conjugate form, the posterior will no longer have the same form as the prior. 
Moreover, the posterior will often not be "analytic"—therefore, not one of the distribution 
functions made available in the standard scientific programming languages. One has to 
proceed numerically, which can be tricky and tedious. 
 
Using the conjugate form for the prior has several advantages:  

 The form of the posterior does not change.  
 Therefore, when the prior is updated, only the values of the hyperparameters 

change. 
 The new values are computed from the old values and from the new data by update 

formulae, which are often computationally trivial. 
 The update formulae take as their arguments the previous values of the 

hyperparameters and some basic sample statistics (usually sums and counts). 
 If one chooses any form for the prior on the Bernoulli other than the beta form, then 

one has to compute the source distribution, take the product between it and the 
prior distribution function, and compute the integral of that product over the 
parameters of the source distribution to obtain the normalization factor. That is 
intimidating, both conceptually and practically 

 The conjugate prior for a given source distribution, if it exists, is unique. 
 
In short, many practical and some purely mathematical considerations suggest using the 
conjugate prior. Doing so greatly simplifies the computations one has to do and it reduces 
the burden of defending one’s choice of a form for the prior. 
 
Three Common Source Distributions and Their Conjugate Priors 
 
In this primer, we deal with the three most common source distributions: the Bernoulli, the 
exponential and the Normal (aka Gaussian). Their conjugate prior distributions are the 
beta, the Gamma and the Normal-Gamma. 
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Both the source and the prior distributions may be parameterized in different ways. The 
different possible parameterizations can cause confusion and opportunity for error when 
using the distribution functions in a programming language. Make sure your programming 
language parameterizes a distribution in the same way you parameterize it. If it does not, 
use an appropriate change of variable formula. In the Supplementary Material, we list the 
different parameterizations of these distributions and their conjugate priors. We also 
provide the change-of-variable formulae. 
 
To get started—before one brings in data—one has to assign initial values to the 
hyperparameters. We denote the initial hyperparameter vectors by 𝜃0 (or theta0 in code 
documentation). Thus, in what follows, 𝜃 without subscript refers to the parameter vector 
of the source; 𝜃0 to the initial value assumed for the prior’s parameter vector, and 𝜃n to the 
parameter vector of an updated posterior. For many—but not all(!)—purposes, one wants 
to use a minimally informative prior, which means one wants to assign initial values that 
have a noticeable impact on the estimated source parameter vector only when there is very 
little data (e.g., 1 datum). 
 
Often, even when one knows that one does have prior information, one wants to pretend 
ignorance, because ignorance is often equated with lack of bias. Also, specifying priors that 
actually do take into account what one already knows arouses anxiety the first few times 
one does it. If for whatever motive, one wants to be (or appear to be) unbiased, one should 
use the Jeffreys prior. It has a small—and most importantly—a readily defensible “bias.” 
 
A Jeffreys prior is a conjugate prior with a special and unique choice of initial value(s) for 
its hyperparameter(s): 𝜃beta0 = [.5 .5]; 𝜃gam0 = [.5 0]; 𝜃ng0 = [0 0 –.5 0]. Jeffreys priors are 
minimally informative. They have the further technical advantage that the parameter 
estimates obtained are invariant under a change of parameters. What that means is that, if 
one chose to work with a different parameterization of the source distribution —for 
example, with mean and variance rather than mean and precision—and if one worked with 
the equivalent forms for the prior distributions (the prior distribution after transformation 
by the change-of-variable formula), then the estimates obtained for the source 
distribution’s parameters would agree with the estimates obtained using the alternative 
parameterization. It is startling and a bit disconcerting to learn that this will not be true for 
any choice of prior other than the Jeffreys prior! In practice, the disagreements are 
negligible except when there is very little data. However, we, like our subjects, are 
interested in the conclusions one may rationally draw when there is almost no data. 
 
The formulae for updating the values of the hyperparameters and the custom function calls 
for performing these updates and plotting posterior distributions are in the Supplementary 
Material 
 
Figure 3 plots the estimated source distributions and the posterior distributions on their 
parameter(s) for different amounts of simulated data. The left column plots the estimated 
Bernoulli sources and their beta-distribution posterior on the source’s p parameter, given 
1, 5 and 20 draws from a Bernoulli distribution whose true p value was 0.5. The initial 
parameter vector for the beta distribution was 𝜃 = [.5 .5], which makes it the Jeffreys prior 
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on the Bernoulli. The estimated values of p and q = 1–p are shown on the estimates of the 
source distribution. The updated values for the α and β hyperparameters (the parameters 
of the beta posterior) are shown on the posterior. Note that the support for the source 
distribution are the integers 0 and 1 (“failure” and “success”), while the support for the 
beta posterior is the interval from 0 to 1, the uncountably infinite number of different 
possible values for a Benoulli p. 
 
The middle column of Figure 3 plots the estimates of an exponential source distribution 
and the gamma distribution posterior on its rate parameter, given 1, 3 and 10 draws from 
an exponential distribution whose true rate parameter was 0.2 responses/s. This rate 
corresponds to an average inter-response interval of 5 s. The estimated value for the rate 
parameter, 𝜆, is shown on each plot of the estimated source distribution, along with its 
reciprocal, the estimated value of the mean. The initial values of the gamma 
hyperparameters were 𝜃 = [.5 0]. Those initial values make the gamma distribution the 
Jeffreys prior on an exponential source distribution. The updated values for these 
hyperparameters are shown on the plots of the posterior distribution (even rows). 
 
The right column of Figure 3 plots the estimated Normal distribution and the Normal-
Gamma posterior distribution on its mean and precision (=1/var), given 1, 4 and 20 draws 
from a Normal distribution with a mean of 2 s and a standard deviation of .4 (therefore, a 
CoV of 0.2). 
 
An informative prior was used to illustrate what one might do in estimating a temporal 
CoV. It was 𝜃0 = [0 0 4 .37]. It asserts that, before we have seen any real data, we have seen 
4 “ghost” data— that would yield the sufficient statistics needed to estimate a variance. A 
variance is the mean of the squared deviations. To compute it, you need the sum of the 
deviations and the number of deviations that went into that sum. The 4th element in the 
informative 𝜃0 is a suggested sum of squared deviations and the 3rd element is the number 
of deviations on which this suggestion is notionally based. 
 
For two reasons, the 3rd element is the one that had to be considered first in constructing 
this informative prior given our prior knowledge of the ballpark in which the variance 
should fall: i) It determines the weight given to our prior knowledge: the bigger that 
number, the more more informative the prior. ii) One needs that number to convert a 
variance into a sum of squared deviations. The starting point for the conversion was the 
prior knowledge that the standard deviation will probably be less than 0.3. Another way of 
stating that knowledge is that the variance will probably be .32 ≤ .09. (Squaring the σ to get 
the variance is an example of a change of variable formula.) To get that variance given an n 
of 4.5 (the Bayesian version of 4), the sum of squared deviations has to be 4.5*.09 = .37 
(another example of applying a change of variable formula). 
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Figure 3. Estimated 
source distributions 
(odd rows) and the 
corresponding 
conjugate posterior 
distributions (even 
rows) for the Bernoulli 
source (Col 1), the 
exponential (Col 2), 
and the Normal (Col 
3). The estimate of the 
source distribution’s 
parameter(s) is shown 
on each source plot. 
The updated 
hyperparameters are 
shown on (Cols 1 and 
2) or above (Col 3) 
each posterior 
distribution. The 
posteriors in Col 3 are 
contour plots, because 
the posterior depends 
on two variables. The 
asterisk marks the 
maximum likelihood 
point (the summit). 
The contour levels are 
at 0.5, 0.1, 0.05 and 
0.01 times the summit 
level. Note that the 1st 
element in the 
hyperparameter 
vector is the estimate 
of the mean. This 
estimate is not biased 
by the informative 
prior; it biases only the 
variance. Thus, the 
estimate of the mean given only 1 datum is the value of that datum. Without the 
informative prior (see text), it would not be possible to estimate the precision given only 
one datum. The informative prior supplies the estimate of the variance when there is but 1 
datum and biases later estimates. 
 
The posterior on the Normal is a contour plot on a 2D support plane. The support plane 
contains the points that are the cross product of the plausible values for the mean and the 
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plausible values for the precision. The contours in a contour plot enclose the combinations 
that have a likelihood above some given level. They are the contours on the posterior 
distribution “hill,” just as the contours on a topographic map are the equal-elevation 
contours on real hills.  
 
Note for those who know Bayes’ Rule 
What is here called the source distribution is usually called the likelihood. The likelihood 
function plays a fundamental role in Bayes’ Rule, 
 
    𝑝(𝜃|𝑫) ∝ 𝑝(𝑫|𝜃)𝜋(𝜃|𝑀).     (1) 
 
Here, 𝑝(𝜃|𝑫) is the posterior distribution on the model’s parameter vector given that data 
(D), 𝜃; 𝑝(𝑫|𝜃) is the likelihood function, and 𝜋(𝜃|𝑀) is a prior distribution on the possible 
values for the parameter vector of an assumed stochastic model, 𝑀. The M denotes what we 
have called the source distribution, but with a twist: One ordinarily thinks of a source 
distribution—say the Bernoulli—as specifying the probabilities of various outcomes (failure 
or success) given a value for the parameter vector (e.g., given p = .5). That is, the source 
distribution is a probability distribution over possible data. The likelihood function, on the 
other hand, treats actual data—the observed outcomes—as parameters of the source 
distribution. Using the source distribution “backwards”—with the data taken as its 
parameters—gives the likelihood (N.B, not the probability) of different possible values for 
the source distribution’s parameter. Think of M as the distribution function in a scientific 
programming language: When run in the forward direction, it generates the probabilities 
(or probability densities) for different possible values for the data. When run backwards, 
treating the data as parameters, it generates likelihoods for different possible values of the 
source distribution’s parameters.  
 
For example, assume one has observed 3 failures and 1 success when drawing from a 
Bernoulli distribution whose parameter, p = 0.5. The number of successes follows a 
binomial distribution. For this example, the source distribution for the binomial is the 
probability of each of the 5 possible outcomes—0, 1, 2, 3 or 4 successes— given that p = 0.5. 
The likelihood, on the other hand, is the probability of having observed 3 failures and one 
success for the all the values p might possibly assume. Put another way, the function 𝑝(𝑫|𝜃) 
is the source distribution when viewed as a function of the data, D, but it is the likelihood 
function when viewed as a function of the parameters, . Unlike source distributions, 
likelihoods functions do not integrate to 1, which is why they are not probabilities. 
 
Our expression for Bayes Rule (1) asserts a proportion (∝), not an equality (=). That’s 
because when the right-hand side is integrated over  (or summed for discrete variables), it 
doesn’t equal 1, whereas the integral of the left-hand side does (because it’s a probability 
distribution). The factor by which the right-hand side of (1) must be rescaled is called the 
normalizing factor. It is the reciprocal of the integral. This product is sometimes called the 
marginal likelihood or the model evidence. For many purposes this product is all one needs. 
Some examples are: i) in computing a point estimate for the source parameter(s) and a 
credible interval on that estimate; ii) computing Bayes Factors. That is one reason why the 

Commented [rf2]: If M really does go here, I’m lost. 

Commented [rf3]: I couldn’t really understand this, in large 

part because you seem to be using M to mean two things. In 

any case, I don’t see that it adds much to the explanation 

directly before it. Other readers have told me this was very 

helpful and it seemed to help the audience in my lecture. 

 

 M DOES mean two different things. That’s why the usage is 

confusing. When run in the forward direction, it maps 

possible values for data to probabilities; when run 

backwards, it maps data to likelihoods. These are two 

different functions. It’s confusing to use one denotation for 

two different functions. The notation is not confusing for 

those who understand, but the language that goes with the 

notation is very confusing. Trust me, I was very confused for 

a year or two. 

Commented [rf4]: This seemed like too much text for a 

simple idea. 

 

Our audience does not have your talent for mathematics 
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normalizing factor is often omitted from the functional form of Bayes Rule and the equals 
sign replaced by the proportion sign. The other reason is to keep the expression as simple as 
possible. 
 

 
Fundamentals of Information Theory 
 
We do experiments to gain information. Intuitively, some experiments produce more 
information than others. The information we have gained from past experience enables us 
to predict/anticipate what may happen next and to infer what may have happened in the 
past. The information from observing outcomes enables us to infer the events and 
processes that produced them. This equally true of the information that non-human 
animals gain from their experiences in Pavlovian and instrumental conditioning 
experiments. It enables them to anticipate what will happen and the consequences of their 
actions. It also enables them to infer models of the processes and events that produce their 
experiences (model-based learning). 
 
The study of timing behavior is the study of how brains acquire and use the information 
provided by objectively measurable associations (see below for how they may be 
measured). It cannot be distinguished from the study of associative learning, because 
associative learning supervenes on a temporal map (Balsam & Gallistel, 2009; Chandran & 
Thorwart, 2021; Honig, 1981; Taylor, Joseph, Zhaoc, & Balsam, 2014). The temporal map—
a time-stamped record of past episodes—makes possible the computation of the intervals 
between events. That computation makes possible the inference of a predictive model. 
 
The preceding two paragraphs presuppose we understand what information is. Until, 1948, 
one could only babble when asked to say what it was. Shannon (1948) made it a 
scientifically useful concept by defining it mathematically1. Thus, we suggest that students 
of timing and associative learning learn to measure the information that events provide 
about the form and parameters of the stochastic processes that generate those events. 
Bayesian parameter estimation works together with simple information-theoretic 
computations in a modern timing research toolkit.  
 
To understand Shannon’s definition of information, we need to understand entropy. The 
entropy of a probability distribution, commonly denoted by 𝐻, is given by 
 

     𝐻 = ∑ 𝑝𝑖log𝑏
𝑖=𝑛
𝑖=1

1

𝑝𝑖
     (1) 

 
where 𝑝𝑖  is the probability of the ith member of the support set, n is the number of elements 
                                                 
1 “In physical science a first essential step in the direction of learning any subject is to find principles of 

numerical reckoning and methods for practically measuring some quality connected with it. When you 
can measure what you are speaking about, and express it in numbers, you know something about it, 
when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may 
be the beginning of knowledge, but you have scarely, in your thoughts advanced to the stage of science.” 
(Thomson, 1883 -p.72) 

Commented [rf5]: Measure seems like the wrong word, 

since it implies that it’s a physical object light height or 

weight. You could replace “measure” with “compute”, but I 

think “defining it mathematically” was his main 

contribution. Of course, that makes the quote problematic. 

 

One of my main contentions is that we show how to measure 

the strength of an association, where an association denotes 

an objective fact about our experience. Most measurements 

require computation, particularly in their modern form. Take 

for example laser-based measurements of distance. Even the 

measure of durations requires computation because it 

requires differencing two times, as we discussed. Think tik 

and tok in Matlab; there must be equivalents in C and Python 

and R 
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in the support set (the number of possibilities, which could be infinite) and 𝑏 is the base of 
the logarithm. The base, b, can be any number greater than 1. In practice, it is usually e (the 
base of the natural logarithms) or 2; the units of entropy are nats in the first instance and 
bits in the second. Because entropy depends on log(1/p), it must be non-negative. 
 
Entropy may also be considered to be a measure of uncertainty: the higher the entropy of 
one’s distribution on some empirical variable, the more uncertain one is about the value 
that variable will take when next encountered. For instance, a die has higher entropy than a 
coin, because the chances of correctly guessing the outcome of a die role is 1/6 while the 
chances of correctly guessing the outcome of a coin flip is 1/2 (so you’re much more likely 
to correctly guess the coin than the die). A biased coin has lower entropy than an unbiased 
one, because you’re more likely to correctly guess the outcome. In the extreme case when 
the probability of, say, heads is 1, the entropy is zero, and you’re sure of the outcome before 
the coin is flipped.  
 
Entropy of a continuous distribution.  
Most of the time, continuous functions and distributions can be discretized, and if the 
discretization is fine enough the quantities one cares about don’t change. For example, we 
could replace a probability distribution p(x) with its discretized version, in which the 
probability that a variable lies between x and x+dx is p(x)dx. In the limit of small dx, the 
discrete distribution still sums to 1 (or very close to 1), and we can still do statistical 
inference. Moreover, as dx goes to zero, those operations become increasingly accurate. 
However, one thing we can’t do is compute entropy. It’s easy to see why: entropy is a 
measure of uncertainty, and as dx becomes small, we become increasingly uncertain which 
interval our variable lies in. As dx goes to zero, we become completely uncertain, and the 
entropy goes to infinity. It does not make sense to refer to the probability attached to a 
point in the support for a continuous distribution, because there are uncountably many of 
them and there is no way to even refer to all but a negligible number of them (the 
countable ones).  
 
When confronted with infinities, the best thing to do is simply throw them away. This is 
what early information theorists did: they defined the differential entropy analogously to 
Equation (1), but for continuous distributions, 
 
 

H[p(x)] = dx p(x) logb (1/p(x)).     (2) 
 
The problem with throwing away infinities is that it’s hard to do rigorously. And, in fact, the 
numerical value of differential entropy varies with the units attached to the data. Changing 
the units can give it any value one likes. It also changes under a nonlinear change of 
variables, often by a very large amount – a point we’ll return to shortly. 
 
Fortunately, we’re almost always interested in differences in entropy, which are better 
behaved. A particularly important difference is the mutual information, I, between two 
variables, say x and y, defined as 
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   I(x,y) = H[p(x)] –  dy p(y) H[p(x|y)]   (3) 
 
where the notation p(x|y) means the probability distribution over x conditioned on y. 
Although it’s not immediately obvious, I(x,y) is independent of the units with which one 
measures x and y. It’s even invariant under a nonlinear change of variables. The above 
definition of mutual information applies to discrete distributions as well (simply replace 
the integral over y by a sum). It even applies to mixed discrete and continuous 
distributions. 
 
Mutual information has a natural interpretation of obvious psychological and 
neuroscientific importance: it’s an upper limit on the average reduction in uncertainty 
about x one can get from observing y—and vice versa, because I(x,y)= I(y,x). When y is a 
direct measure of x, but with error bars, then information is approximately equal to the 
entropy of p(x) with x expressed in the units equal to the error bars. For instance, if 
observing y told us the value of x to within 1 cm, then I(x,y)  H[p(x)] if x is measured in 
cm. However, this expression is valid only if H[p(x)] is large; it breaks down if H[p(x)] is 
small, and it breaks especially badly if H[p(x)] is negative (since mutual information cannot 
be negative). 
 
Unfortunately, not all differences in entropy are so well behaved. If we have two 
distributions p1(x) and p2(x), then H[p1(x)]–H[p2(x)] doesn’t depend on the units of x. 
However, it does change under a nonlinear change of variables. For instance, the 
differential entropy of an exponential distribution is the natural log of its rate parameter. 
However, if we switch to log units, the entropy becomes independent of the rate parameter. 
This is relevant, for instance, for time, because log units often make more sense than linear 
units. It’s why we have units of time that increase exponentially (seconds, minutes, hours, 
days, etc.), and it’s consistent with the Weber’s law for time, which tells us that errors in 
estimating time scale linearly with time, and so are constant in log time. 
 

On the other hand, the consequences of changing the variable from time to log time have 

unacceptable intuitive/interpretive psychological and neuroscientific consequences, because 

brains do not treat either time or number logarithmically. They do not treat the difference 

between 1second and 2 seconds as equivalent to the difference between 1 hour and 2 hours, even 

though log2(7200) – log2(3600) = log2(2) – log2(1) = 1 (Brannon, Wusthoff, Gallistel, & 

Gibbon, 2001; Gibbon & Church, 1981). Nor do human subjects think that their uncertainty is 

the same when told that a bus will arrive in the next few minutes versus in the next few hours. In 

information theory, entropy and uncertainty are often treated as two sides of the same coin, a 

duality that goes back to Shannon (1948). We want to preserve these intuitive meanings when 

bringing information theory to bear on psychological and neuroscientific issues. 

 
Available information, the other side of the entropy coin. Consider a random variable, x, for 
example, the interval between two successive randomly scheduled rewards. We denote by 
p(X) a probability distribution on x. When the rewards are randomly scheduled, p(X) is an 
exponential distribution. Consider another random variable, y, and a probability 
distribution on it, denoted by p(Y). When we have decided on appropriate units, the 
available information about x is the entropy of p(X); it measures the uncertainty about the 
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true value of x. When learning a value for y removes all uncertainty about the value of x, 
then y communicates all the available information. The amount of uncertainty that has 
been removed depends on the precision with which we have measured x. In scientific 
notation (where ‘1201’ is denoted by 1.201e3), the precision is (or at least should be) 
reflected in the number of digits to the left of e. When there is only 1 decimal digit, the 
implied precision is 1 part in 10; when there are 4 decimal digits, as in the example given, 
the implied precision is 1 part in 10,000, a precision neuro-biologically made 
measurements rarely attain. 

A message cannot reduce a subject’s uncertainty by more than the entropy in the subject’s 
distribution on the variable in question. While from a mathematical perspective, the 
support vector for a continuous distribution is uncountably infinite, the same cannot be 
true for a subject’s representation of a continuous distribution, because neurobiologically 
realized representations of quantities must have limited precision. Limited precision 
makes the number of elements in a support vector countable. All physically realizable 
systems for symbolizing quantities and carrying out computations on those symbols have 
limited precision. Good systems also take account of the limits on precision that derive 
from imprecision in the measurements that map from the quantities to the symbols that 
represent them. The extent to which the results of a computation can be trusted depend on 
the quality of the measurements that delivered the numbers that went into the 
computation. (The garbage-in-garbage-out principle.) 
 
Shannon’s Coding Theorem 
 
Shannon's (1948) coding theorem proves that, in the maximally efficient code for data 
coming from some distribution, the length of the code for a given datum is proportional to 
log(1/p), where p is the probability of that datum—the relative frequency with which it 
has to be encoded. His theorem entails that when one is coding the data from a distribution 
with a given form (e.g., the Bernoulli or the exponential or the Normal) and with a given 
parameter vector, 𝜃, then, to maximally economize on the amount of memory used to store 
the data, one must adjust the coding scheme so that the length of the code words—for 
example, the number of bits in a binary vector that encodes interval durations—grows as 
the log of the inverse of the probability that the brain will need to encode a given interval. 
Intuitively, rare events must be assigned long code words and frequent events short code 
words— and the function relating relative frequency to code length must be logarithmic. 
Shannon’s coding theorem is the foundation of modern communication technology; it tells 
us how to make maximally efficient use of physical resources such as memory and signal 
bandwidth. Without Shannon’s insights, there would be no Zoom and no Netflix. 
 
A consequence of Shannon’s coding theorem is that, when using a well-constructed coding 
scheme, the lengths of the words used to store data are a physical realization of the (log of) 
the probability vector in the distribution that models the data distribution. Therefore, the 
relative frequency of a datum may be determined from the relative length of the “word” 
that encodes it. The length of the word that encodes a datum may be thought of as the 
height of a bar in a histogram with a logarithmic y axis. The width of that bar is the range of 
x values (e.g., experienced intervals) to which that probability is assigned. The intervals 
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that map to that bar are treated as “essentially the same” for the purpose for which the data 
are currently represented. For what ‘the length of the word’ might mean physically, think 
bit pattern or nucleotide sequence. 
 

The Kullback-Leibler Divergence 
 
The Kullback Leibler divergence of a distribution, P, from a distribution, Q, is denoted 
Dkl(P||Q). It gives the average cost (usually in bits or nats) of encoding a datum from the P 
distribution using a code optimized for the Q distribution. In other words, the cost of 
erroneously assuming that the two distributions are one and the same. The prepositions 
‘of’ and ‘from’ are stressed because the divergence is not symmetric, that is, Dkl(P||Q) ≠ 
Dkl(Q||P). 
 
Some information theorists consider the Kullback-Leibler divergence to be a more basic or 
foundational information-theoretic measure than entropy. Unlike entropy, it is well defined 
for both continuous and discrete distributions and invariant under change of variable. 
 
When n data have come from a distribution, Y, that diverges from a distribution, X, by 
Dkl(Y||X), the cumulative number of memory bits that have been wasted encoding the y’s 
on the assumption they were x’s is nDkl. We call this the cumulative coding cost. We show 
in an Appendix that it maps to the probability that two distributions with the same form do 

not differ, given the data: We show that the nDkl is distributed Γ(𝑛𝑝 2,1⁄ ), where Γ denotes 

the gamma distribution and 𝑛𝑝 is the number of parameters (e.g., 1 for the Bernoulli and 

exponential, 2 for the Normal). Thus, the nDkl is a simple information-theoretic measure of 
whether there is a significant difference between the distributions. 
 

Measuring Association and Contingency 
 
Events are temporally associated to the extent that the location of the next event may be 
predicted from knowledge of the location of the preceding event, and vice versa. A random 
distribution of event times maximizes uncertainty about where in time the next event and 
the preceding event may be found. In information-theoretic terms, it is the maximum 
entropy distribution  (Jaynes, 1957, 2003). The maximum entropy principle is an 
information-theoretic formulation of Occam’s razor: assume as little as possible. The 
maximum entropy distribution for events distributed in time is the exponential. 
 
One way to think about the exponential distribution is that in any (infinitesimal) time bin 
dt, the probability that a food pellet appears is rate  dt. This means events are completely 
randomly distributed in time; in other words, they are not self-associated. Knowing, for 
instance, the most recent tx does not alter an observer’s uncertainty about where in time 
the next tx may be encountered nor where in the temporal map the preceding tx may be 
found. Any other distribution induces some degree of self-association; that is, the location 
of the next point can to some extent be predicted from the location of the preceding point 
and vice versa. This gives the exponential distribution a very counter-intuitive property: 

Suppose we repeatedly drop a pointer onto the time line at randomly chosen points in time, 
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and we compute the intervals looking forward in time from the pointer to the next tx and 
also backward in time to the most recent tx—the prospective and retrospective intervals). 
They both have entropy H(X), where X is the exponential distribution. 
 
Consider now a stream of y events, [y1, y2, …] occurring at times 𝑡1

y
, 𝑡2

y
…. We want a 

measure of the maximum possible uncertainty about 𝑡𝑛+1
y

 given 𝑡𝑛
y

. It follows from the 
counter-intuitive facts about the exponential distribution that the maximum possible 
uncertainty is measured by the entropy of an empirical exponential distribution with μ = 
n/D, where n is the number of y events so far observed and D is the duration of 
observation. The more predictable 𝑡𝑛+1

y
 becomes, the more this entropy is reduced. When 

𝑡𝑛+1
y

− 𝑡𝑛
y

 is a constant, the distribution of the intervals between successive y events has no 

entropy, 𝑡𝑛+1
y

 is completely predictable when given 𝑡𝑛
y

, and the y events are maximally self-

associated.  
 
Consider now a second stream of x events occurring at times 𝑡1

x, 𝑡2
x ….. We want a measure of 

the extent to which the x events are associated with the y events, a measure of how 
predictable the next 𝑡x is when given a 𝑡y. We also want a measure of how retrodictable the 
preceding 𝑡y is when given a 𝑡x. 
 
The predictability of the next 𝑡x given a 𝑡y is maximized when 𝐻(𝑋|𝑌) = 0 and minimized 
when 𝐻(𝑋|𝑌) = 𝐻(𝑋). Similarly, the retrodictability of the preceding 𝑡y when given a 𝑡x is 
maximized when 𝐻(𝑌|𝑋) = 0 and minimized when 𝐻(𝑌|𝑋) = 𝐻(𝑌). The maximization in 
both cases (prediction and retrodiction) occurs only when 𝑡x and 𝑡y always coincide, that is 
only when ∀𝑛𝑡𝑛

x ≡ 𝑡𝑛
y

 and the distribution of these coincident events is exponential. The 
minimization of predictability (maximization of uncertainty) occurs when both 
distributions are independent. In that case, the mutual information is 0, because 𝐻(𝑋|𝑌) =
H(X) − 𝐻(𝑋|𝑌) = 0 = 𝐻(𝑌) − 𝐻(𝑌|𝑋). Finally, in the conditions of applicability we here 
consider, 𝐻(𝑌|𝑋) ≤ H(X) ≥ 0.  
 
A measure related to the mutual information between X and Y may therefore be 
constructed as follows: 

 Let C be an unconditional distribution of intervals, with rate parameter 𝜆|C. [In the 
examples considered, these intervals will be the inter-reward or inter-shock 
intervals when the subject is in a test chamber in which a transient CS, such as a 
noise or light, creates mutual exclusive and exhaustive periods denoted by CS and 
~CS. That is why we denote the unconditional distribution by C: one can think that it 
means either Chamber or Context. In operant conditioning (reinforcement 
learning), the contextual distribution is the distribution of the intervals between 
rewards (or, more generally, between act outcomes.] 

 Let Y be the conditional distribution of intervals, with rate parameter 𝜆|Y. [In 
excitatory Pavlovian conditioning, this is the distribution of waits for reward 
signaled by CS onsets. In inhibitory Pavlovian conditioning and in trace 
conditioning, it is the distribution of waits for rewards signaled by CS offsets. In 
operant conditioning, the retrospective conditional distribution is the distribution of 
intervals looking back from the rewards to the most recent response. There is also a 



 20 

prospective conditional distribution in operant conditioning, but its definition 
differs depending on the protocol (VI, FI, FR, VR, etc).] 

 The contextual and conditional distributions are always chosen such that 𝜆|C ≤ 𝜆|Y, 
the contextual rate is less than or equal to the conditional rate. 

 The sufficient statistics from a sample of wait intervals are the number of waits and 
the duration over which they were observed. Under the maximum entropy 
principle, this is equivalent to treating the distributions as exponential.  

 Entropies are computed using the formula for the differential entropy of the 
exponential, 1–ln(𝜆), where 𝜆 is the rate parameter (=1/µ) 

 The unit of time is chosen so that 𝜆|C ≤ 𝜆|Y < 1 This makes the formula for the 
differential entropy of the exponential unproblematically applicable under the 
stipulated restrictions. 

  
The proposed measure of association is: 

Δ𝐻|Y&C = (1 − ln(𝜆|C)) − (1 − ln(𝜆|Y)) = ln(ln(𝜆|Y)) − ln(ln(𝜆|C)) = ln
𝜆|Y

𝜆|C
               (4) 

given that [𝜆|C ≤ 𝜆|Y ≤1], and otherwise undefined. 
 
And the contingency, denoted 𝒞(𝑋; 𝑌), is (under the same restrictions): 
 

𝒞(𝑋; 𝑌) =
Δ𝐻|Y&C

1 − ln(1/𝑘)
                  (5) 

 
In words—using a well-known example— Equation (4) says that the association between 
the CS and the US in excitatory Pavlovian conditioning is measured by the reduction in 
uncertainty about the waits for reward following the onset of a CS. Equation (5) says that 
the contingency is that reduction normalized by the available information, the amount of 
information that a CS could convey. the denominator. The procedure for estimating k is 
explained in the next section.  
 
The Time-Scale Invariance of Association and the Estimation of k 
 
The proposed measure of association, Equation (4), does not measure the strength of a 
hypothetical construct in the mind or brain, such as a connection weight, or the strength of 
a Hebbian synapse or the value attributed to a reward; rather, it measures an observable 
fact about the temporal distribution of events. The rate ratio in (4) is unitless. If associative 
learning depends on what Δ𝐻 measures, it must be time-scale invariant, because 
informativeness is time-scale invariant. There is extensive evidence that Pavlovian 
conditioning is time-scale invariant (C. R. Gallistel & Gibbon, 2000). The evidence first 
emerged in a meta-analysis of trials to acquisition in pigeon autoshaping done by Gibbon 
and Balsam (1981). 
 
Pigeon autoshaping is a Pavlovian protocol in which an illuminated key takes the role of the 
bell (the CS) and pecking that key takes the role of salivation (the conditioned response). It 
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was studied intensively by many labs in the 1970s because it proved to be a more efficient 
way of training pigeons to peck keys than the shaping recommend by Skinner (1938). 
 
Until the discovery of autoshaping, it had been assumed that teaching a pigeon to peck a 
key was the paradigmatic example of reinforcement learning (aka operant conditioning). 
The difference between Pavlovian conditioning and operant conditioning is that in operant 
conditioning, the learning depends on the subject’s observing the consequences of 
behavior; it seems to be driven by a retrospective association, a look back in time. In 
Pavlovian conditioning, the behavior is irrelevant to the learning process. The only role of 
behavior in Pavlovian conditioning is to reveal to the experimenter whether or not the 
subject has learned (perceived) the association. The learning in Pavlovian conditioning 
appears to be driven by a prospective association, a look forward in time. 
 
Balsam and Gallistel (2009) suggest that the rate ratio in (4) be called a protocol’s 
informativeness, because it determines the amount of information a subject may gain from 
a CS. Gibbon and Balsam (1981) called it the C/T ratio. C stood for 𝜇C the Cycle duration, 
that is, the US-US interval), and T stood for 𝜇CS. In the delay-conditioning protocols they 
analyzed, the CS had a fixed duration and the US coincided with CS offset. Thus, the wait for 
the US at CS onset was the Trial duration. 
 
In an autoshaping protocol, the key is illuminated every now and then (at more or less 
random intervals) for a fixed duration, at the end of which the food (US) is delivered. It is 
delivered regardless of anything the subject may have done. Different labs used different 
trial durations (denoted T, the duration of the CS) and different different US-US intervals. 
They denoted the US-US interval by C for the cycle duration. It is the sum of CS duration 
and the average ITI, that is, the average interval between the termination of the previous 
trial and the onset of the next CS. 
 
The now widely accepted operating definition of rate of learning—the reciprocal of USs to 
acquisition—was then little attended to. It was often not reported for individual subjects, 
as is now best practice. However, Gibbon and Balsam obtained the raw data from twelve 
different labs, which enabled them to compute for each bird, the trial at which it satisfied 
an acquisition criterion (one or more pecks on three out of four successive trials). 
 
They discovered a surprising regularity (Figure 4): The data are well described by a simple 
regression equation: n(λ|CS/λ|C-1) ≥k, where k = 294 ±28. The regression model applies 
over the full range of learning rates, from 0 (infinite USs to acquisition) to 1 (acquisition 
following the first US), a span of almost 3 orders of magnitude on both axes. It accounts for 
75% of the variance, with no evidence of systematic deviation, as evidenced by the out-of-
sample circle in Figure 4, a datum that was not in the data to which the model was fit (the 
asterisks). 
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The success of this regression model is a theory killer. We are not aware of a formalized 
theory of associative learning that can produce it. Moreover, it has only one free parameter, 
k. That parameter has a data-based interpretation; it is the λ|CS/λ|C that produces one-trial 
learning. In Equation (5), we suggested that the entropy of an exponential with rate 
parameter 1/k be considered the available information, the upper limit on how much 
information a Pavlovian CS can provide. 
 

Figure 4. Median USs to the acquisition 
of a conditioned response in pigeon 
autoshaping protocols, as a function of 
the informativeness (I) of the protocol, 
on double-logarithmic coordinates. The 
asterisks are the data plotted in Figure 
7.11 on p. 245 of Gibbon & Balsam 
(1981). The regression line was fit to 
those data. The open circle is an out-of-
sample datum from Group No F in Table 
8.5 on p. 245 of Jenkins et al (1981). 
The second x axis, shows the relation 
between informativeness and its 
logarithm, Δ𝐻, the suggested measure 
of associative strength. The 95% 
confidence interval on k is 265 to 322 
(0.2 bits). 

 

The quantity on which the rate of learning depends, λ|CS/λ|C –1 is the percent increase in 
the rate of reward to be expected when the CS is present (λ|CS), relative to the rate 
expected simply from being in the context in which the CS occurs (λ|C). That makes 
intuitive sense on what might be called the make-hay-while-the sun-shines principle, 
where the pecking the key is understood as foraging behavior (making hay). 

The regression equation further implies that subjects begin to respond to the CS only when 
the cumulative excess USs exceeds k. One would like to understand what determines this 
decision criterion. Figure 5 may give a hint. The Dkl a measure of the strength of the 
evidence that λ|CS differs from λ|C (see Appendix). It also gives the amount of memory that 
may be saved by recognizing this difference by using λ|CS rather than λ|C to encode waits 
experienced during CSs. Figure 5 shows that the value for k in the regression equation is 
the λ|CS/λ|C such that the Dkl corresponds to a p value < .002 against the hypothesis that 
λ|CS = λ|C. It also shows that adopting the λ|CS estimate when encoding the waits for USs 
during CSs will save Δ𝐻|𝐶𝑆) = 8 bits (one byte) of memory per datum encoded. 
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Figure 5. The Dkl plotted against Δ𝐻|𝐶𝑆 
=log2(λ|CS/λ|C). The vertical dashed line is the 
Δ𝐻|𝐶𝑆 when the protocoled association produces 
one-trial learning. The horizontal dashed line is 
the probability of receiving this amount of 
information from a spurious association. 
 
 
One might expect the decision to respond under 
circumstances that do not produce one-trial 
learning would be based on the strength of the 
evidence accrued over the pre-decision trials, that is, on nDkl, the cumulative coding cost. 
That is not the case: Near the other end of the regression, when λ|CS/λ|C = 1.5, the Dkl is 
only .07 bits, indicating that the evidence for an association on any given CS-US pairing is 
very weak. Weak associations may be spurious and not assumed to exist until frequently 
observed. 
 
However, acquisition does not occur until the 500th trial, when the nDkl is > 36. That value 
for the nDkl indicates astronomical evidence for the association. If acquisition were based 
on the accumulated evidence for a weak association, it would have occurred much sooner, 
because the nDkl would have exceeded 8 bits after 8/.072 = 111 USs. Thus, the rationale 
for basing the decision to respond on the cumulative excess USs rather than on the 
cumulative evidence for an association remains to be clearly understood. However, Figure 
5 suggests that the choice of a criterial cumulative excess may depend on the excess that, if 
experienced on a single occasion, would be evidence for a maximum-strength association. 
Put another way, one way of understanding k is that 1–ln(1/k) is the available information, 
which is why it appears as the normalizing factor in our proposed definition of 
contingency, Equation (5). Given the magnitude of k, 1–ln(1/k) is essentially ln(k), which is 
1.44*ln(k) in bits. 
 
Time-Scale Invariance and Contingency in Reinforcement Learning 
 
The conclusion that Pavlovian conditioning depends on the time-scale-invariant Δ𝐻|𝐶𝑆, 
which measures the association between CS and US timing, poses the question whether the 
same is true in reinforcement learning (aka operant conditioning). Previous work in the 
information-theoretic framework (C. R. Gallistel, Craig, A., Shahan, T.A., 2019) implicates 
the importance of two different associations in reinforcement learning—the prospective 
association, which is the extent to which a response predicts reward, and the retrospective 
association, which is the extent to which a reward retrodicts a response. 
 
If the processes that detect these associations are time-scale invariant, then an arbitrarily 
long hang-fire latency between an act and an outcome—between response and 
reinforcement— should be no obstacle to the maximally rapid learning of an operant 
response. It should be learnable after only one or two rewarded responses when there is a 
strong contingency between the response and the expected wait for the next reward, that 
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is, when either: 1) a response communicates substantial information about when to expect 
reward (prospective contingency) or 2) the reward communicates substantial information 
about the recency of a response (retrospective contingency). 
 
Prospective and retrospective contingencies are not the same because the distribution of 
intervals looking back from rewarding outcome (O) to the most recent act (A) may be very 
different from the distribution of intervals looking forward from A’s to the next O (C. R. 
Gallistel, Craig, A., Shahan, T.A., 2019). When pigeons peck a key on variable interval 
schedules of reward, every reward is preceded at a very short, fixed interval by the peck 
that triggers its delivery. Thus, the entropy of reward-conditional distribution of the 
retrospective intervals to a response, H(A|O), is 0, while the unconditional (marginal) 
distribution has substantial entropy, because inter-peck intervals are approximately 
exponentially distributed (C. R. Gallistel, Craig, A., Shahan, T.A., 2019). Therefore, adapting 
Equation (4) to the present case: 
 

   Δ𝐻(𝐴; 𝑂⃖ ) = 𝐻(𝐴) − 𝐻(𝐴|𝑂⃖ ) = 𝐻(𝐴) − 0 = 𝐻(𝐴)  (6) 

 

In words, when the retrospective conditional entropy, 𝐻(𝐴|𝑂⃖ ), is 0, knowledge of the time 
at which the outcome occurred reduces to 0 the uncertainty about the recency of the act 
because act and outcome are coincident to within the accuracy of measurement. Thus, the 
outcome communicates all of the available information about the recency of the act that 

produced it. Therefore, the retrospective contingency, Δ𝐻(𝐴; 𝑂⃖ ) 𝐻(𝐴)⁄ , is 1.   

  
 
On the other hand, pigeons pecking on a variable interval schedules of reward peck at a 
much higher rate than the rate of reward. Although the delivery of the reward is triggered 
by a peck, the effect-less pecks between the rewards and the reward-triggering peck are so 
numerous that the distribution of intervals looking forward from pecks to the next 
reward—the distribution of A–O intervals—is practically indistinguishable from the 
distribution of O–O intervals (C. R. Gallistel, Craig, A., Shahan, T.A., 2019). In that case, 
 

   Δ𝐻(𝑂; 𝐴) = 𝐻(𝐴) − 𝐻(𝑂|𝐴) = 𝐻(𝐴) − 𝐻(𝐴) = 0  (7) 

 

so the prospective contingency, Δ𝐻(𝑂; 𝐴) 𝐻(𝐴)⁄  is 0. 

 
Degrading the retrospective contingency 
 
Lengthening the hang-fire interval between a reward-triggering act and the delivery of the 
triggered outcome (reward delivery) allows (reward-irrelevant) acts to intrude into the 
hang-fire intervals. The intrusion of these acts adds entropy to the retrospective 

conditional distribution, A|O⃖  . The longer one makes the hang-fire interval, the greater this 
entropy becomes; hence, the lower the perceivable retrospective contingency becomes. 
Gallistel et al (2019) found that subjects responding on VI schedules with lengthened hang-

fire intervals reduced their rate of response so as to maintain a critical amount of Δ𝐻(𝐴; 𝑂⃖ ).  
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This result, together with some little known previous results on instrumental learning with 
30s delays of reward (Lattal & Gleeson, 1990), led Gallistel et al (2019) to conjecture that 
the computation that solves the assignment of credit problem in reinforcement learning is 
time-scale invariant. 
 
The assignment-of-credit problem in reinforcement learning poses the question, What did I 
do that made that happen? How brains solve this problem is a central concern of 
computational neuroscientists working on Reinforcement Learning (Dayan & Niv, 2008; 
Gershman, Norman, & Niv, 2015; R.S. Sutton, 1984; R. S. Sutton & Barto, 1998). If the credit-
assignment process is time-scale invariant, then the interval between an act and the 
outcome it triggers can be arbitrarily long, provided that the naive response rate is low 
enough so that the retrospective intervals between initial rewards and the responses that 
trigger them are much shorter than initial estimates of reward-reward intervals.  
 
A recent experiment in Shahan’s lab, now being written up, tested this conjecture with the 
following simple protocol: Naive rats were given four half-hour long sessions of magazine 
training during which they learned that the 3s illumination of the feeding hopper signaled 
the release of a food pellet. This hopper training was followed by an hour-long session of 
context extinction, during which no pellets dropped into the hopper and there were no 
hopper illuminations.  The 10 subjects were then divided into an experimental group and a 
group of yoked controls (n = 5 in both groups). 
 
Both groups were returned to their test boxes, in which a lever was now extended. For 
subjects in the experimental group, pressing it triggered the drop of a pellet into the 
hopper (and illuminated it for 3s coincident with the drop)—but only after a hang-fire 
delay of 2 minutes. Presses made during the hang-fire delay had no consequences. 
 
When a subject in the yoked control group pressed the lever, it had no consequences. 
However, they experienced the same pellet releases and hopper illuminations as the 
subject in the experimental group to which they were yoked.  
 
To the best of Shahan’s knowledge, a 2-minute delay is longer than any delay of 
reinforcement ever tested in an operant experiment. Ever since Skinner’s seminal work 
(Ferster & Skinner, 1957; Skinner, 1938), operant conditioners have supposed that more 
or less “immediate” reinforcement of responses was critical. They have, however, remained 
non-committal about the definition of ‘immediate’. This same supposition found in most 
contemporary reinforcement-learning models: the reinforcement is assumed to be 
delivered at the termination of the state in which the causal act is made (Gershman et al., 
2015; Yael Niv, 2019; Y. Niv, Daw, & Dayan, 2005). 
 
Positing an “I just made a response state” that endures for 2 minutes seems a stretch. 
During two minutes, awake rats generate many different responses. They may also make 
the same response many times. Thus, this experiment poses in particularly stark form the 
question of how brains solve the assignment of credit problem in reinforcement learning. 
How do they learn what works and doesn’t work? How fast do they learn it? What are the 
crucial experiential variables that determine the answers to these questions? And, perhaps 
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most importantly, what is the representation of their experience that enables them to solve 
the problem? Does reinforcement learning also supervene on a temporal map, the learning 
of which makes possible the computation of prospective and retrospective interval 
durations?  
 
Estimating Prospective and Retrospective Contingencies After the First Few Rewards 
 

By Equation (6), the prospective Δ𝐻(𝑂; 𝐴) is log2 (𝜆O|A  ⃗ 𝜆O⁄ ). 𝜆O|A  ⃗  is the (estimated) rate of 

the outcome following the act [=1/(average wait for that outcome after making that act)], 
while 𝜆O. is the marginal (unconditional) rate of reward [1/(average inter-reward 
interval)]. Thus, to measure the prospective and retrospective associations, we must 
estimate 𝜆O|A  ⃗  in order to estimate the entropy of the waits for reward conditioned on the 

subject’s having made a response and we must estimate 𝜆O in order to estimate the entropy 
of the waits for reward (the entropy of the unconditional or marginal distribution). 
 
The response-conditional rate of reward,𝜆O|A  ⃗ , cannot be less than 1/2 minutes given the 

protocol, because the wait for a reward after making a response is never greater than 2 
minutes. The average wait will, however be shorter than 2 minutes if a subject makes 
further responses during the wait triggered by an initial response. These intruding 
responses do not trigger rewards, but they do reduce the average wait between a response 
and the next reward. Four of the 5 experimental subjects made additional responses during 
the 2-minute delay following their first response. The closer these additional responses 
came to the reward, the shorter the average A–>O interval. Thus, it was generally less 2 
minutes, particularly early in training. Thus, 𝜆O|A  ⃗ ≥ 0.5 min⁄  for the experimental subjects. 

For their yoked controls, on the other hand, the average wait for a reward was the average 
wait from randomly chosen points in time. If the distribution of O-O (reward-reward) 
intervals is approximately exponential, then the average wait for a reward from a randomly 
chosen points in time is equal to the average O-O interval (that is, the contextual inter-
reward interval). 
 
How to estimate the marginal distribution (the unconditional waits for reward) is 
ambiguous—for us, and probably for the rats as well. They spent 60+ minutes in the test 
box prior to the first reward. If one takes the 60 minutes with no reward during context 
extinction into account, then 𝜆O < 1 60 min = 0.0167 min−1⁄  after the first reward. In that 

case, Δ𝐻(𝑂; 𝐴) = 4.9 bits. 

 
The ambiguity about the relevant intervals for computing the marginal entropy arises from 
the fact that the lever was not present during context extinction. The rats may have taken 
its presence as a change in context, because the new context enabled an action that was not 
possible in the preceding context. 
 
If rats regarded the box with a lever as a new context, then their estimate of the contextual 
rate would have been based only on the latency of the first reward in the first session with 
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the lever present. That latency ranged from 2.8 minutes to 13.6 minutes, yielding 
unconditional rates of reward of 1 2.8 = 0.36⁄  to 1/13.6 = .074 rewards/min. 
 
The initial values for the response-conditional rates of reward in this context depend on 
the initial pattern of responding. For a subject that makes only 1 response before reward 
delivery, the initial response-conditional rate of reward is 0.5 min-1. In that case, the 
prospective ∆H would range from log2(.5/.36) = 0.47 bits to log2(.5/.074) = 2.8 bits. 
Suppose, however, that a subject makes a first response, waits 110 seconds and then makes 
9 more responses in the 10 seconds prior to reward delivery. The average wait for reward 
following a response is then mean([1 2 3 4 5 6 7 8 9 120]) = 16.5s, for a response-
conditional rate of reward of 60/16.5= 3.6 min-1. This rate is much higher than any of the 
unconditional rates of reward in the lever context. On the other hand, suppose the subject 
responded at 60 responses/minute during the entire 2 minutes between its first response 
and the reward triggered by that first response. In that case, the average interval from a 
response to a reward would be 1 minute, and a response-conditional rate of reward = 
1/min. This highlights the fundamental difference between the associations that drive 
reinforcement learning and the associations that drive Pavlovian learning: In Pavlovian 
protocols, the associations between CS and reward do not depend on the subject’s 
behavior, while in operant protocols, both the prospective and the retrospective 
associations do depend on the subject’s behavior. 
 

Figure 6a plots the prospective Δ𝐻(𝑂; 𝐴) over the first 10 rewards for the first pair of 

yoked subjects when the marginal entropy, 𝐻(𝐴), was estimated from reward-by-reward 
Bayesian estimates of 𝜆O|A  ⃗ . and reward by reward estimates of 𝜆O using only the intervals 

observed in the context where the lever was present. In this pair, the △H was already a 
measurable quantity (equal to almost 1 bit) after the first response made by both the 
experimental subject and its yoked control. (They happened to make their first presses at 
almost the same elapsed time in the session.) This objective aspect of the experimental 
subject’s experience was already strong (greater than 5 bits) after the experimental 
subject’s 2nd response; whereas, for the yoked control, it dropped to near 0 after its 3rd 
response. To learn what these two subjects did, readers will have to wait for the 
publication. 
 

Figure 6b plots the retrospective △H over the first 10 rewards for the same paired 
subjects. It, too, became almost immediately very strong for the experimental subject and 0 
for the yoked control. Thus, there is a readily measurable objective aspect of each subject’s 
experience that could explain an immediate difference in their behavior after a single 
experience in which there was a 2-minute separation between the causal action and the 
outcome it produced. 
 
Estimating the strength of the evidence 
The reward-by-reward estimates of the prospective and retrospective associations in 

Figure 6—that is, the △H’s on the y axes—were computed by Bayesian estimation of the 
rate parameters. The estimate after 1 reward was based on one datum; the estimate after 2 
rewards on two data, and so on. There is, of course, great uncertainty about the accuracy of 
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these estimates, and that uncertainty 
propagates to the estimates of the prospective 
and retrospective associations. One obviously 
wants measures of the strength of the evidence 
for them. That’s where the nDkl and the 
posterior distributions on the rate estimates 
come into play. The posterior distributions 
quantify the uncertainty about the parameter 
estimates and the nDkl measures the strength of 
the evidence provided by two different rate 
estimates. 
 
Figure 6. a. The prospective change in entropy 

(reduction in uncertainty), Δ𝐻(𝑂; 𝐴), as a 
function of number of rewards, for one 
experimental subject and its yoked control. Only 
the first 10 rewards are shown. b. The 

retrospective change in entropy, Δ𝐻(𝐴; 𝑂⃖ ) for 
the same pair 
 
 
 
Figure 7. a. The cumulative coding cost of 
assuming no prospective association between a 
response and the wait for reward, as a function of 
the number of rewards, for both the experimental 
and the yoked subject. When this cost exceeds 
1.92 nats, the evidence for the association is 
significant at beyond the .05 level. When it 
exceeds 5.4 nats, it is significant at beyond the 
.001 level. b. The cumulative coding cost of 
assuming no retrospective association between a 
reward and the recency of the last response, as a 
function of the number of rewards, for both the 
experimental and the yoked subject. For an 
explanation of how the nDkl acquired its negative 
sign, see text. 
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The Dkl is gives the cost of encoding a wait drawn from the conditional distribution on the 
assumption that it comes from the unconditional (marginal) distribution. When that 
assumption is true, the Dkl decreases as a scalar function of the sample n —a manifestation 
of the law of large numbers—with the consequence that the cumulative coding cost, nDkl, 
has the same distribution regardless of the n. We show in the Appendix that nDkl is 
distributed Γ(. 5,1) when the distributions are exponential. Because the formula for the Dkl 
is itself extremely simple—Dkl(in nats)=ln(λP)-ln(λQ)+λQ/λP-1—the nDkl provides an 
exceptionally simple measure of the evidence for a difference between two exponential 
distributions. As a bonus, it has a neuroscientific interpretation; it gives the number of bits 
of memory storage space that may be saved by recoding the already observed conditional 
waits. Figure 7 plots the nDkl’s for the prospective and retrospective ∆ H ’s against the 
number of reward. 
 
In Figure 7b, the cumulative coding cost for the yoked control is moderately negative. A 
divergence, like an entropy, cannot be negative. However, to facilitate graphic 
interpretation, we have added to the custom functions that compute and plot the nDkl an 
option that allows the user to give the nDkl the sign of the difference between the 
conditional and the marginal rate estimates. When there are few data, spurious 
associations may appear giving rise to smallish nDkl’s that are in the wrong direction. In 
looking at the graphs, one does not want to confuse the effects of small-sample error, which 
diminish as the sample grows, with real effects. The real effects always grow as the sample 
grows. Our adding sign to indicate divergences opposite to those expected (and observed!) 
in the long run explains the initially negative cumulative coding costs in the retrospective 
cumulative coding cost for the yoked control in Figure 7b. The asymptotic cumulative cost 
was within about ±1 of 0 (data not shown), as it must be when events are independently 
distributed in time. 
 
Measuring the Strength of the Evidence for Differences in Probability 
 
To illustrate the application of Bayesian parameter estimation and the cumulative coding 
cost to Bernoulli probabilities, we draw on data from a not-yet published experiment 
conducted by Basak Akdogan in Peter Balsam's lab. Her experiment used tone durations as 
the discriminative stimuli (S△), in a two-lever operant choice procedure, with mice as 
subjects. In operant conditioning, an S△ is a signal that indicates which of two possible acts 
will produce a reward. It is presented just before two levers appear, enabling a choice of 
actions. In initial training, the S△ was a tone lasting either 2s or 6s. For the subject whose 
data we analyze here, the choice of the left lever was rewarded following the 2s tone and 
the choice of the right lever was rewarded following the 6s tone. 
 
The subject was pretrained until it chose the correct levers above chance following both 
tone durations. When the subject had been responding at asymptote for 600 trials, the 
discriminative stimuli changed: The 2s tone no longer occurred; it was replaced by an 18s 
tone. The correct response to this novel duration was the left lever—the lever that had 
previously been correct given the 2s tone, that is, the shorter of the two initial S△’s. The 6s 
tone continued to occur on 50% of the trials. The correct response on those trials remained 
what it had always been: press the right lever. 
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The last 2s tone occurred on Trial 601; On Trial 602 the tone lasted the already familiar 6s. 
On Trial 603, it lasted for a never-previously-experienced 18s. The subjects had no way of 
knowing what the consequences of pressing either lever might now be. They also had no 
way of knowing how frequently to expect the 18s duration. If its occurrence signaled a 
change in the state of the world. In this new state, there was no way to know how 
frequently to expect the other two durations (2s and 6s) nor what the reinforcement 
contingencies might be.  
 
In this and most experiments of a similar nature, the first statistical issue is estimating a 
subject’s pre-switch probability of choosing the correct lever following a given S△ and the 
uncertainty about what that value is. A more challenging issue is to determine whether pre-
change choice performance is/was stable. 
 
We estimate the pre-change pcorrect using the Jeffreys prior, which is the beta distribution 
with initial hyperparameters 𝜃beta = [.5 .5]. When updated by the number of correct 
choices, ns, and failures to choose correctly, nf, over the last 300 pre-change 6s trials, the 
(hyper)parameters of the beta prior/posterior are 𝜃beta = [ns+.5 nf+.5]. Figure 8 plots the 
posterior distribution on the pre-change probability of a correct choice following a 6s tone. 
This distribution represents the uncertainty about the estimate of the subject’s probability 
of a correct choice. 
 
We can compute critical intervals on our estimate of p from 𝜃beta, using the inverse function 
in the suite of functions that scientific programming languages provide for distributions in 
common use (see Code for each Figure in the Supplementary Material). Critical intervals 
are the Bayesian version of confidence intervals, but they have a less convoluted 
interpretation: The ratio of the area under the probability distribution within a critical 
interval to the area that falls outside that interval is the odds that the value of the estimated 
parameter lies within the critical interval, given the data. Using the beta inverse function, 
we find that only 1% of the area under the curve in Figure 8 lies below 0.85 and only 1% 
lies above .93; thus, the odds are 50:1 in favor of the conclusion that the subject’s pre-
change probability of choosing the right lever was in the interval between [.85 .93]. 
 
Figure 8. The posterior beta distribution on the 
estimate of the Bernoulli probability, p, of a 
correct choice following the 6s prior to the 
change in the discriminative stimuli.  
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Checking on the stability of a parameter estimate 
 
An often-vexing methodological issue is the criterion for when a subject has attained 
asymptotic performance or, at least, a stable level of performance. The nDkl statistic can 
help. 
 
To check on the stability of the pre-change lever-choice probability in this mouse, we call a 
custom function that compares an evolving p value to a reference value and computes the 
nDkl statistic to identify stretches of trials where there is strong evidence of a deviation 
from the reference distribution: 
 

[CmPdif,nDkl,PnDkl,pt] = BernCCCchange(D1,theta1,theta0,.9,true); 
 

D1 is the binary vector of successful (rewarded) choices of the right lever during the pre-
change era; theta1 is the updated parameter vector for the beta posterior distribution as of 
the final (300th) pre-change trial; theta0 is the initial vector of hyperparameters for the 
beta prior; and the optional 'true' (the 5th input) tells the function to plot the figure (see 
Figure 9). The fourth input argument, .9; is the complement (1–α) of a "significance" level 
(α) for the nDkl statistic. Including it among the input arguments causes the function to 
return NaN when the number of data and the reference p are together such that a 
“significant” nDkl is impossible. For example, when the α is 0.05 and there are fewer than 5 
data, an nDkl significant at α is impossible, because the probability of getting 4 heads in the 
first 4 flips of a fair coin is .0625 
 
Figure 9. The trial-by-trial estimate of the 
probability of choosing the right lever as a 
function of the pre-change sequence of 
trials (black curve, plotted against left 
axis). The thin black dashed lines give the 
critical levels for this estimate, given the 
complete data set. The red curve is the 
signed nDkl statistic, plotted against the 
right axis. The thin red horizontal dashed 
lines (bottom and top of panel) represent 
alpha levels of .05 on this statistic.  
 
 
Sign was added to the plot of the nDkl red 
curve in Figure 9 to indicate the direction 
of the divergence. The subject’s estimated probability of pressing the right lever following a 
tone of 6s duration was lower than the lower limit of the critical intervals on the terminal 
estimate during Trials 1-8 (when a significant departure of 𝑝̂ from a reference value of 0.9 
was impossible) and then again from Trials 19-49, when a significant departure was 
entirely possible (black curve in Figure 9). However, the signed nDkl reached moderate 
significance (dashed red horizontal at bottom of plot) on only a single trial (Trial 31, 
p<.05). The fact that this trend did not continue, and nDkl turned back toward zero, 
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indicates that it is a statistical fluctuation that implies no departure from a stable choice 
probability of 0.9. In general, the longer one continues to flip a fair coin, the more certain it 
becomes that one will observe atypical sequences that seems to imply the coin was not fair 
over that stretch of flips. Thus, brief excursions in nDkl beyond essentially arbitrary alpha 
levels, such as the one that valleys at Trial 31 in Figure 9, should be ignored. The 
fluctuations in the nDkl already observed between trials 0 and 150 fall well within those 
expected on the null hypothesis, so this experiment could have gone on to the next phase 
much sooner had these analytic methods been used on line while the experiment was 
running. 
 
The convergence of the red curve plotting nDkl to close to 0 as the number of trials 
approaches 300 is a peculiarity of this data set. The distribution of the nDkl under the null 
hypothesis is independent of n; it does not become narrower as n grows larger. The fact 
that it’s close to zero in this plot just means that the subject’s probability of pressing the 
right level was within about 1 part in 300 of 0.9. If the experiment went on longer, the nDkl 
would eventually explore values within about ±1 of 0.  
 
Measuring the Growing Strength of Stochastic Stimuli 
 
From an information-theoretic perspective, conditioning protocols are stochastic stimuli 
unfolding in time because the amount of information available to the subject about the 
contingencies in the protocol increases as the protocol persists. 
 
The subject’s behavior is a stochastic stimulus for the experimenter and/or the data 
analyst: As we observe more behavior, the evidence for (or against) a contingency between 
the S∆ and a subject’s choices appears and grows stronger. The cumulative coding cost 
allows us to compare the growth of the objective evidence of reinforcing contingencies 
observed by a subject—the strength of the stimulus as a function of time—to the strength 
of the behavioral evidence for contingency perception, as a function of time. 
 
When the 2s duration ceased to occur and a novel 18s duration began to occur, the mouse 
was confronted with a novel discriminative stimulus (a tone lasting 18s). A question of 
central interest was the rapidity with which the mouse would adapt its behavior to the 
contingency between this new stimulus and reinforcement. 
 
A consideration of fundamental importance in the analysis of instrumental behavior is that 
the rate at which the subject acquires information about the true state of affairs depends on 
its behavior. It depends on what Reinforcement Learning theorists call exploratory 
behavior, and we call information-gathering behavior. This is what distinguishes 
instrumental conditioning (aka operant conditioning) from Pavlovian conditioning. 
 
One of the many interesting aspects of Akdogan’s experiment is that it pits the ideal 
observer against the ideal agent. The ideal observer is often taken to be the observer that 
performs perfect statistical inference given the data. However, the performance of perfect 
statistical inference presupposes that the observer has the correct model. More 
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importantly, this conception of the ideal observer implicitly assumes that the observer’s 
behavior has no effect on the data it has seen (and will see!).  
 
The ideal agent, by contrast, behaves so as to maximize its return, the amount of some 
desired outcome attained per unit time invested in acting. A properly informed agent is one 
that has gained the knowledge necessary to act optimally a given the assumed loss 
function.  
 
The Growth of Behavior-Independent Probability Estimates 
 
Among the things the subject does not know after the first 18s tone is the relative 
frequencies with it it will again hear the three DS durations it has so far encountered. 
Figure 10 plots Bayesian estimates of the post-change probabilities of hearing each tone 
duration as a function of the number of post-change trials.  
 
The middle panel of Figure 10 plots the ideal observer’s estimate of the probability of a 
tone lasting 6s, on the assumption that the first occurrence of the 18s tone leads this ideal 
observer to wonder whether all bets are off. In this computation, the observer’s uncertainty 
about that is captured by putting a weakly informative prior of 𝜃0 = [5 5] on the new 
probability of a 6s tone. (Note the contrast to the uninformative prior in which 𝜃0 = [0.5 
0.5]). The red plot in that panel is the cumulative coding cost of assuming that the new 
probability of a 6s tone (when estimated using a 
weakly informative prior) is the same as the old one. 
The nDkl is stable and low, giving no suggestion that 
this probability has changed. 
 
Figure 10. Top: Bayesian estimate of the probability of 
an 18s duration tone as a function of the number of 
trials, counting from its first occurrence. Middle: 

Bayesian estimate of the probability of the 6s △S given 
a weak presumption that it continues to be 0.5, (black 
curve, plotted against the left axis) and the (unsigned) 
nDkl statistic for its divergence from the pre-change 
probability (red curve, plotted against the right axis). 
The thin red dashed line at top of plot is the .05 alpha 
level on the nDkl. Bottom: Bayesian estimate of the 

probability of the 2s △S (black, left axis) and nDkl (red, 
right axis). The odds that it has diminished exceed 20:1 
after the 11th post-change trial. 
 
By contrast, the black curve in the bottom panel of 
Figure 10 plots the Bayesian observer’s estimate of the 
probability of a 2s tone, on the same assumption, while 
the red curve plots the cumulative coding cost of 

1 3 10 30 100 300 1000
0

0.2

0.4

0.6

0.8

1

p
(D

S
d

u
r=

1
8

s
)

1 3 10 30 100 300 1000
0

0.2

0.4

0.6

0.8

1

p
(D

S
d

u
r=

6
s
)

0

0.5

1

1.5

2

n
D

k
l)

1 3 10 30 100 300 1000

Post-Change Trial (log scale)

0

0.2

0.4

0.6

0.8

1

p
(D

S
d

u
r=

2
s
)

0

0.5

1

1.5

2

n
D

k
l)



 34 

making that assumption. The odds against the no-change assumption are 20:1 after the 11th 
trial. 
 
Because of the informative prior, the Bayesian estimate of the new probability is 0.23 after 
11 successive trials during which a 2s duration has not occurred. The increasing odds 
against the no-change hypothesis give reason to abandon the informative prior. If one 
replaces it with the uninformative Jeffreys prior, 𝜃0 = [0.5 0.5], the odds against the 
assumption that the new probability is the same as the old are better than 20:1 after the 5th 
trial and the estimate of the new probability is 0.08. With the new improved 
(uninformative) prior, the odds against the no-change hypothesis are then 1,000:1 after the 
11th post-change trial. A rational observer would change her prior, because, when assessing 
stochastic stimuli, the future is informative about the best representation of the past. 
 
In sum, the results in Figure 10 tell a Bayesian observer that by the 11th post-change trial, 
the probability of an 18s tone is approximately 0.5, the probability of a 6s tone remains 
approximately 0.5, and the probability of a 2s tone is trending toward 0. 
 
Tracking the Change in the Behavioral Probabilities 
 
In behaviorist models of choice, subjects do not learn probabilities; rather they form habits 
(Hull, 1930). This is called model-free learning in contemporary Reinforcement Learning 
theories. For the mouse whose data are here featured, the habit of choosing the right lever 
following a tone of 6s duration was rewarded on every 6s trial both before and after the 
substitution of 18s tones for the 2s tones. Its reaction to this change shows that choosing 
the right lever following a 6s tone was not a habit; its behavior depended on the arithmetic 
relation between the durations. 
 
In reaction to the appearance of 18s tones and the disappearance of 2s tones, the mouse 
reduced its probability of pressing the right lever following the 6s tones, even though 
pressing the right lever continued to be unfailingly reinforced (Figure 11, top). The 
reduced probability of pressing the right lever and the correspondingly increased 
probability of pressing the left lever following 6s tones became evident on the 14th post-
change trial, which was the 7th 6s trial following the first occurrence of an 18s tone. The 
behavioral change is indicated by the downward inflection in the black curve and the 
corresponding sharp upward inflection in the red curve in Figure 11. The odds confirming 
the existence of this change permanently exceeded 20:1 after the next 15 6s trials (red 
curve, Figure 11). At that point, the Bayesian estimate of the probability of choosing the 
right lever had dropped below the lower .01 boundary of the 98% critical interval on the 
Bayesian estimate of the pre-change probability of this choice (black curve, Figure 11). 
 
This enduring reaction to the 6s stimulus reduced the subject’s probability of 
reinforcement on 6s trials, hence its overall rate of reinforcement. The violation of the 
predictions of the model-free” habit” hypothesis was even more striking in the other 7 mice 
in this protocol. Several of them reduced their probability of pressing the correct lever well 
below chance. 
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Figure 11. The conditional probability of 
sampling (pressing) the right lever as a 
function of all the trials (pre- and post-change) 

on which the △S was 6s (black curve plotted 
against left axis) and the cumulative cost of 
assuming the post-change probability equals 
the pre-change (red curve, plotted against 
right axis). The thin, black, dashed, horizontal 
lines indicate upper and lower limits on 
critical intervals for the pre-change estimate 
(intervals containing .8, .9 and .98 of the 
probability mass). The odds against the null 
hypothesis are 20:1 above the thin, red, 
horizontal dashed line. The thin vertical 
dashed black line indicates the first occurrence 
of the 18s tone. 
 
The sustained and substantial reduction in the post-change probability of choosing the 
right lever following a 6s tone can be understood on the assumption that subjects place a 
high value on information in a changing world. When things change, it pays to behave so as 
to learn the new contingencies, because knowing them is a pre-condition for optimal 
behavior. When the 18s tone supplants the 2s tone, for all the mouse knows, pressing the 
left lever following a 6s tone may sometimes yield a bigger reward than that yielded by 
pressing the right lever. Continuing to press the left lever only very rarely on 6s trials will 
retard the forming of an estimate of what those two probabilities might be—the probable 
size of a possibly bigger reward and the probability of producing it. Thus, the rationality of 
a subject’s post-change behavior can only be judged when we know the value it places on 
the information to be gained about the variety of consequences that might follow from 
pressing the left lever on 6s trials relative to the value it places on maintaining the 
previously experienced rate of reward on those trials. 
 
 
Measuring Contingency Detection Behaviorally and Photometrically 
 
Kalmbach, et al (Kalmbach et al., 2021 under review) measured mesolimbic dopamine 
activity photometrically in mice that had previously learned to press a lever for food 
reward. The photometric monitoring of dopamine activity began when these mice first 
began to hear tones that lasted 80s, during which lever presses did not produce rewards. In 
other words, the already learned contingency between pressing a lever and obtaining food 
was now contingent on the absence of the tone (a second order contingency). 
 
A CS subdivides the context in which it occurs into mutually exclusive and exhaustive CS 
intervals and ~CS intervals. aka intertrial intervals, or ITIs for short. When calculating 
associative strength, the conditional distribution must always be the distribution whose 
rate of reward is higher than the contextual rate of reward. Thus, the conditional 
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distribution in this protocol is the distribution of US-US intervals during the ITIs. Its rate 
parameter is λ(US|~CS), the informativeness is λ(US|~CS)/λ(US|C), and ∆H is the log of 
that rate ratio. 
 
Figure 12 plots the trial-by-trial rate estimates and the nDkl for two subjects. In Figure 12a, 
the subject began to respond at a higher rate during the ITIs than during the tones only 
after 300 trials. In Figure 12b, the subject consistently responded at a higher rate during 
the ITIs after the 8th trial. This 37-fold difference in the rate of learning is an extreme 
example of the noisiness commonly seen in this statistic (trials to acquisition). 
 
To delimit the training interval within which the conditioned behavior or neurobiological 
activity appeared, we extracted two measures from these plots: 1) The trial after which the 
evidence for a CS-ITI difference in the behavior or neurobiological activity) permanently 
exceeded an evidentiary criterion. 2) The trial after which the estimated response rate 
during the ITIs permanently exceeded the estimated response rate during the CSs. This 
latter trial may be regarded as the trial after which the conditioned behavior appeared, 
while the former is the trial at which the evidence that it had appeared became decisive. 
Because the strength of the evidence for a change grows as more data come in, the evidence 
for it often becomes decisive only after the change is apparent in retrospect. These two 
trials—the trial after which conditioned response appeared and the trial after which the 
evidence for it was decisive—are marked, respectively, by a vertical dotted red line and by 
a vertical dash-dot red line in Figure 12. 
 

 
Figure 12. Trial-by-trial estimates of the response rates during the CSs and the ITIs (black 
solid and dashed curves, left axis) and the signed cumulative cost of assuming that the CS 
rate is the same as the ITI rate (red curve, right axis). Vertical dotted red lines indicate the 
trial after which (𝜆r|CS– 𝜆r|ITI ) is enduringly negative. Vertical dash-dot red lines are the 

trials after which the signed nDkl remained less that 3.3 nats (the p<.01 level). a. The rate 
estimates (black plots) cross at Trial 308, where the vertical dotted red line is; the vertical 
red dash-dot red line is at Trial 320. The x axis is linear. b. The black curves cross for the 
last time at Trial 8. This is also the trial after which the signed nDkl is permanently less 
than 3.3 nats (p<.01). Therefore, the vertical red dash-dot line superposes on the vertical 
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red dotted line. The x axis has been logged to better reveal what happened over the first 10 
trials. 
 
Figure 13 plots the signed cumulative coding cost of assuming that the CS rates are the 
same as the ITI rates for the 8 subjects in the negative contingency (“inhibitory”) protocol 
(top two rows) and the 4 subjects in the truly random control (no contingency). For the 4 
subjects in the non-contingent condition (bottom row of Figure 13), the nDKL was positive 
throughout training. Note also that these nDkl’s did not continue to climb, unlike the nDkl’s 
for the negative contingency subjects, which maintained or often increased their 
downward slope as training continued. The slope of the nDkl is proportionate to the 
difference in the rate estimates. When the slope is 0, so is the difference in the rate 
estimates. 
 
Applying the nDkl to the Photometric Data on DA activity. 
 
Abby Kalmbach recorded DA activity photometrically on most of the training sessions. 
Technical problems sometimes prevented her obtaining a signal on some sessions, 
particularly with the first few subjects. In the course of training, a marked drop in the mean 
signal appeared in the negative contingency subjects—the subjects in which the onset of 
the CS signaled a decrease in the rate of reward to below the contextual rate and its offset 
signaled and increase to above that rate. A striking feature of the drop was a negative spike 
during the first 1.5 seconds of each CS and a positive spike during the 1.5 s following the 
termination of the CS. 
 

 
Figure 13. The signed cumulative coding cost of assuming that the rate of pressing during 
the CSs is the same as the rate during the ITIs for all 12 subjects. The thinner vertical line 
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indicates the trial at which the response appeared; the thick vertical line, the trial at which 
the evidence for it became decisive. 
 
To measure trial-by-trial the development of these photometric spikes, we constructed 
templates for them by averaging those same 1.5s segments across the last 200 training 
trials, when the spikes were well developed. We then correlated these templates with the 
corresponding segments in the individual traces from the early trials. The trial-by-trial 
correlation coefficients were approximately normally distributed. We updated trial by trial 
the Normal-Gamma posterior distribution on the mean and posterior of this source 
distribution —the Normal distribution of the correlation coefficients. 
 
We did not, however, use the Jeffreys values for the 𝜃0 of the Normal-Gamma (the Jeffreys 
𝜃0 = <0 0 -.5 0>). We are interested in the mean value of the correlations, not their variance. 
The variance is what is called a nuisance parameter. The variance of a Normal distribution, 
hence its precision, which is the reciprocal of the variance, can assume any positive value. 
However, because these data are correlations, we have analytic prior knowledge of the 
variance: The variance of a distribution of correlations cannot be greater than 1. Generally 
speaking, it will be substantially less than 1. We also had confirmatory empirical prior 
knowledge: Across subjects and regardless of the protocol (negatively contingent or truly 
random), the variance in the correlations was approximately 0.22. 
 
Given this analytic and empirical prior knowledge, we used 𝜃0 = <0 0 4 0.9>. This prior 
implicitly assumes that we had already seen 4 correlations (3rd element of the parameter 
vector) and that the sum of their squared deviations from the mean correlation was .9 (4th 
element). This prior biased the variance estimate toward what we knew a posteriori must 
be about the right value, thereby heightening the sensitivity of the nDkl. The nDkl in the 
Gaussian case depends on the (pooled) variance estimate as well as on the difference 
between the means. We did not bias the estimate of the mean, which was the parameter of 
interest. 
 
In this analysis, the value for the mean of the Q distribution (the reference distribution) is 0 
(the null hypothesis = no correlation). This is an analytic fact; there is no uncertainty about 
it; hence, there is no posterior distribution on the mean of Q. Also, P and Q are assumed to 
have the same variance, the variance estimated from the (gently biased) data. We therefore 
computed the trial-by-trial nDkl’s with and without integrating over the posterior 
distribution on the parameters of P. The results were essentially the same; the resulting 
estimates of the trial at which the nDkl began to rise and the estimates of the trial at which 
the odds against the null became permanently greater than 100:1 did not disagree by more 
than 3 trials in any subject. For two of the 5 small disagreements in the estimates of nDkl, 
the estimate obtained by integrating over the posterior distributions on the parameters of 
the Normal distribution was greater than the estimate obtained using the maximum 
likelihood estimates for these source parameters. 
 
Figure 14 plots the photometric nDkl’s (right two columns) alongside the (negatively 
signed) behavioral ones (left column). For most subjects, decisive evidence (indicated by 
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blue verticals) for a negative photometric spike at CS onset and a positive spike at CS offset 
appeared sooner than decisive behavioral evidence for the detection of the negative 
contingency between the CS and reward delivery. However, in one subject, decisive 
behavioral evidence appeared very quickly and well before decisive photometric evidence 
(see row 2 in Figure 14). In all the subjects, the behavioral evidence rapidly got very much 
stronger than the photometric evidence, because the behavioral “signal” (the magnitude of 
the difference in response rates) got stronger soon after evidence for it became decisive. 
The photometric signals also tended to strengthen, leading to the moderate upward 
concavity seen in the nDkl’s in the right two columns. The strengthening of the photometric 
signals was, however, less pronounced than the strengthening in the behavioral signals. 
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Figure 14. The signed nDkl plots for the behavioral “signal” alongside the (unsigned) 
photometric nDkl’s for the onset and offset spikes in the dopaminergic photometry signal. 
Blue verticals mark the trials where evidence becomes decisive; dotted red verticals mark 
the trial where it first appears. Grey verticals in the photometric columns indicate sessions 
where photometry signal could not be obtained. In the control subjects, the photometric 
nDkl’s were similar to the behavioral ones (bottom row of Figure 13), in that there was 
little evidence for the spikes at CS onset and offset in the photometric signals from the 
control subjects. 
 

Conclusions 
 

A temporal map of past experience enables the replay of episodes and the recovery of 
associative structure (Gupta, van der Meer, Touretzky, & Redish, 2010; Mattar & Daw, 
2018; Ólafsdóttir, Bush, & Barry, 2018; Panoz-Brown et al., 2018; van de Ven, Jäckels, & De 
Weerd, 2022; Zentall, 2019). Information-theoretic tools enable the quantification of 
associative structure using ∆H, which is the entropy of the marginal (unconditional) 
distribution minus the entropy of the conditional (unconditional) distribution—computed 
on the assumption that both distributions are exponential. 
 
Bayesian parameter estimation enables us to estimate the strength of these associations 
after the first US in Pavlovian protocols and after the first the first reinforcement in operant 
protocols. The nDkl (cumulative coding cost) measures the strength of the evidence for the 
association. The entropy difference, ∆H, is the information-theoretic analog of a correlation 
coefficient, while nDkl is the information-theoretic analog of its statistical significance. 
 
The nDkl measure might prove relevant to the search for the engram (Langille & Gallistel, 
2020; Poo et al., 2016), because it gives the amount of memory a brain can save by 
recoding the temporal map in memory using a stochastic model that takes into account the 
observed temporal associations. The mnemonic benefits from recoding previously stored 
data in the light of an improved stochastic model provide a computational rationale for 
consolidation and reconsolidation, which appear to be fundamental aspects of memory 
management (McKenzie & Eichenbaum, 2011). 
 
Adopting new stochastic models to conserve memory resources improves a brain’s ability 
to anticipate future rewards and punishments and to recognize the causal effects of the 
behavior it generates. A model that better explains the data already seen better predicts the 
data not yet seen, when model complexity is properly accounted for (Grünwald, 2007). 
These considerations suggest that information theory may prove relevant to discovering 
the neurobiological processes that construct the temporal map and that do the 
computations that lead to anticipatory behavior in Pavlovian conditioning and to operant 
behavior in reinforcement learning.  
 
Whether consolidation and reconsolidation are manifestations of memory saving based on 
the recognition of stochastic structure proves to be true or not, these tools enable us to 
measure on a reward-by-reward or punishment-by-punishment basis the strength of the 
evidence that a subject’s on-going experience provides about the contingencies we create 
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when we define an experimental protocol. By enabling us to measure the evolving strength 
of the evidence for associative structure, these tools put the study of timed behavior and 
associative learning on the same conceptual footings as the study of sensory processing 
and perception, fields where Bayesian inference and information theory now play 
fundamental roles (Brainard, 2009; Chater, Tenenbaum, & Yuille, 2006; Feldman, 2016, 
2021; Froyen, Feldman, & Singh, 2015; Ganguli & Simoncelli, 2016; Hiratani & Latham, 
2020; Maloney, 2003; Panzeri, Harvey, Piasini, Latham, & Fellin, 2016; Simoncelli & 
Olshausen, 2001; Stocker & Simoncelli, 2008). Using the same tools, we can measure 
simultaneously: i) the strength of the stochastic stimulus, ii) the strength of the evidence 
for it, iii) the strength of the behavioral and neurobiological changes induced by the 
perception of the association, and iv) the strength of the evidence for these changes. 
 
In 1967, Rescorla pointed out that Pavlovian conditioning depended on temporal 
contingencies, not temporal pairing (Rescorla, 1967). He further pointed out that 
contingencies were determined by how events were distributed in time. He confessed, 
however, that he did not have a way of computing contingency. That problem has now been 
solved, not only for Pavlovian conditioning, but also for operant conditioning. 
 
Contingency may be defined as the ∆H(X|Y)/(1–ln(1/k)). This definition simplifies to 
∆H(X|Y)/ln(k) when k is large. X denotes the marginal distribution and Y the conditional 

distribution: Δ𝐻 = log(𝜆𝑥|𝑦 𝜆𝑥⁄ ), where the lambdas are the rate parameters of 

distributions assumed to be exponential. The temporal units attached to the rate estimates 
are such that both ln(𝜆)s>0. 1–ln(1/k)) is the available information, the maximum amount 
of information that a ∆H(X|Y) could convey. 
 
In pigeon autoshaping, k = 294 [CI.95=266 322] (see Figure 4).. A similarly large value of k 
has also been obtained in as yet unpublished experiments on inhibitory Pavlovian 
conditioning with rat subjects in the Balsam lab (kinhib = 260, CI.95 = [216 303]). A still 
larger k  (approximately 800) may be estimated from Figure 10 in Gallistel and Gibbon 
(2000), which gives C/T results for rabbit eyeblink conditioning. Given these large values 
for k, the expression for a Pavlovian contingency simplifies to ∆H(X|Y)/ln(k), which ranges 
between 5.7 and 6.7 nats (8.2 to 9.6 bits) across diverse species (pigeons, rats and rabbits) 
and with both excitatory and inhibitory protocols. 
 
When the unit of ∆H  (associative strength) is bits, raising 2 to the power of ∆H gives the 
factor by which the presence of a CS in Pavlovian excitatory conditioning may reduce a 
subject’s uncertainty about the wait for the next reward or punishment. In inhibitory 
conditioning, it gives the factor by which ~CS intervals may reduce that uncertainty. In 
both cases, the reduction is relative to the context in which the CS and the ~CS occur. In 
operant conditioning (reinforcement learning), raising 2 to the power of the prospective 
∆H gives the extent to which making a response can reduce the subject’s uncertainty about 
the wait for the next reinforcement, while raising to 2 to the power of the retrospective ∆H 
gives the extent to which the occurrence of a reward reduces a subject’s uncertainty about 
where in its temporal map the most recent response occurred. This latter reduction may be 
taken as evidence for causality. 
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In this approach to associative learning, an association is not a conductive connection in a 
brain (a connection weight or a Hebbian synapse). Nor is it a subjective value placed on 
reward or punishment. It is a measurable fact about the distribution of events in time. The 
computations that enable the perception of this fact presuppose a temporal map, a time-
stamped record of events. Its temporal map enables a brain to look back in time to compute 
the intervals and the rate parameters of assumed-to-be exponential distributions. 
 
Our use of the entropy difference as a measure of temporal association is related to a more 
general approach to defining clusters information-theoretically (Slonim, Gurinder, Tracik, 
& Bialek, 2005). Events are temporally associated when they cluster in time. When they do 
so, knowledge of the location of one event in the cluster provides information about where 
the other events may be found (van de Ven et al., 2022) and evidence for some underlying 
causal process that explains the cluster. Clustering is a time-scale invariant phenomenon, 
because it is defined by the entropy within a cluster relative to the entropy of the marginal 
distributions, and entropy itself is time-scale invariant.  
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